TY - JOUR A1 - Karo, Nihad M. A1 - Oberhänsli, Roland A1 - Aqrawi, Ahmed M. A1 - Elias, Elias M. A1 - Aswad, Khalid J. A1 - Sudo, Masafumi T1 - New Ar-40/Ar-39 age constraints on cooling and unroofing history of the metamorphic host rocks (and igneous intrusion associates) from the Bulfat Complex (Bulfat area), NE-Iraq JF - Arabian journal of geosciences N2 - The Northern Zagros Suture Zone (NZSZ), formed as a result of the collision between Arabian and Sanandaj-Sirjan microplate, is considered as part of the Zagros orogenic belt. NZSZ is marked by two allochthonous thrust sheets in upward stacking order: lower and upper allochthon. The Bulfat complex is a part of the upper allochthon or "Ophiolite-bearing terrane" of Albian-Cenomenion age (97-105 Ma). Voluminous highly sheared serpentinites associated with ophiolites occur within this upper allochthon. In addition, the Gemo-Qandil Group is characterized by gabbroic to dioritic Bulfat intrusion with a crystallization age spanning from similar to 45 to similar to 40 Ma, as well as extensive metapelites with contact to the Walash-Naupurdam metavolcanic rocks. Due to the deformation in the Sanandaj-Sirjan Zone along the eastern side of the Iraqi segment of NZSZ, the Gemo-Qandil Group was regionally metamorphosed during late Cretaceous (similar to 80 Ma). This tectono-compressional dynamics ultimately caused an oscillatory deformation against Arabian continental margin deposits as well. During these events, gabbro-diorite intrusion with high-grade contact metamorphic aureoles occurred near Bulfat. Thus, there is an overlap between regional and contact metamorphic conditions in the area. The earlier metamorphic characteristic can be seen only in places where the latter contact influence was insignificant. Generally, this can only observed at a distance of more than 2.5 km from the contact. According to petrographic details and field observations, the thermally metamorphosed metapelitic units of the metasediment have been completely assimilated, with only some streaks of biotite and relicts of initial foliation. They strongly resemble amphibolite-grade slices from the regional metamorphic rocks in the region. Metapelitic samples far from the intrusion give similar biotite cooling ages as the intrusive rocks. Thus, they may be affected by the same thermal event. Ar-40/Ar-39 dating of biotite in metapelite rocks of Bulfat by step-wise heating with laser gave average weighted isotopic ages of 34.78 +/- 0.06 Ma. This is interpreted as crystallization/recrystallization age of biotite possibly representing the time of cooling and uplift history of the Bulfat intrusion. Cooling and exhumation rates for the Bulfat gabbro-diorite rocks were estimated as similar to 400 A degrees C/Ma and similar to 3.3 mm/year respectively. According to petrographic details, field observations and Ar/Ar dating concerning the contact metamorphism near Bulfat due to the gabbro-diorite intrusion, no significant deformation is visible during exhumation processes after the Paleogene tectono-thermal event, indicating that isotopic ages of 34.78 +/- 0.06 Ma could mark the timing of termination of the island arc activity in the Ophiolite-bearing terrane (upper allochthon). KW - Iraq KW - Bulfat KW - Metapelites KW - Northern Zagros Suture Zone (NZSZ) KW - Ar-40/Ar-39 KW - Cooling and unroofing history Y1 - 2018 U6 - https://doi.org/10.1007/s12517-018-3571-x SN - 1866-7511 SN - 1866-7538 VL - 11 IS - 10 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Arridge, Christopher S. A1 - Achilleos, N. A1 - Agarwal, Jessica A1 - Agnor, C. B. A1 - Ambrosi, R. A1 - Andre, N. A1 - Badman, S. V. A1 - Baines, K. A1 - Banfield, D. A1 - Barthelemy, M. A1 - Bisi, M. M. A1 - Blum, J. A1 - Bocanegra-Bahamon, T. A1 - Bonfond, B. A1 - Bracken, C. A1 - Brandt, P. A1 - Briand, C. A1 - Briois, C. A1 - Brooks, S. A1 - Castillo-Rogez, J. A1 - Cavalie, T. A1 - Christophe, B. A1 - Coates, Andrew J. A1 - Collinson, G. A1 - Cooper, John F. A1 - Costa-Sitja, M. A1 - Courtin, R. A1 - Daglis, I. A. A1 - De Pater, Imke A1 - Desai, M. A1 - Dirkx, D. A1 - Dougherty, M. K. A1 - Ebert, R. W. A1 - Filacchione, Gianrico A1 - Fletcher, Leigh N. A1 - Fortney, J. A1 - Gerth, I. A1 - Grassi, D. A1 - Grodent, D. A1 - Grün, Eberhard A1 - Gustin, J. A1 - Hedman, M. A1 - Helled, R. A1 - Henri, P. A1 - Hess, Sebastien A1 - Hillier, J. K. A1 - Hofstadter, M. H. A1 - Holme, R. A1 - Horanyi, M. A1 - Hospodarsky, George B. A1 - Hsu, S. A1 - Irwin, P. A1 - Jackman, C. M. A1 - Karatekin, O. A1 - Kempf, Sascha A1 - Khalisi, E. A1 - Konstantinidis, K. A1 - Kruger, H. A1 - Kurth, William S. A1 - Labrianidis, C. A1 - Lainey, V. A1 - Lamy, L. L. A1 - Laneuville, Matthieu A1 - Lucchesi, D. A1 - Luntzer, A. A1 - MacArthur, J. A1 - Maier, A. A1 - Masters, A. A1 - McKenna-Lawlor, S. A1 - Melin, H. A1 - Milillo, A. A1 - Moragas-Klostermeyer, Georg A1 - Morschhauser, Achim A1 - Moses, J. I. A1 - Mousis, O. A1 - Nettelmann, N. A1 - Neubauer, F. M. A1 - Nordheim, T. A1 - Noyelles, B. A1 - Orton, G. S. A1 - Owens, Mathew A1 - Peron, R. A1 - Plainaki, C. A1 - Postberg, F. A1 - Rambaux, N. A1 - Retherford, K. A1 - Reynaud, Serge A1 - Roussos, Elias A1 - Russell, C. T. A1 - Rymer, Am. A1 - Sallantin, R. A1 - Sanchez-Lavega, A. A1 - Santolik, O. A1 - Saur, J. A1 - Sayanagi, Km. A1 - Schenk, P. A1 - Schubert, J. A1 - Sergis, N. A1 - Sittler, E. C. A1 - Smith, A. A1 - Spahn, Frank A1 - Srama, Ralf A1 - Stallard, T. A1 - Sterken, V. A1 - Sternovsky, Zoltan A1 - Tiscareno, M. A1 - Tobie, G. A1 - Tosi, F. A1 - Trieloff, M. A1 - Turrini, D. A1 - Turtle, E. P. A1 - Vinatier, S. A1 - Wilson, R. A1 - Zarkat, P. T1 - The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets JF - Planetary and space science N2 - Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus' atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013. KW - Uranus KW - Magnetosphere KW - Atmosphere KW - Natural satellites KW - Rings KW - Planetary interior Y1 - 2014 U6 - https://doi.org/10.1016/j.pss.2014.08.009 SN - 0032-0633 VL - 104 SP - 122 EP - 140 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Read, Betsy A. A1 - Kegel, Jessica A1 - Klute, Mary J. A1 - Kuo, Alan A1 - Lefebvre, Stephane C. A1 - Maumus, Florian A1 - Mayer, Christoph A1 - Miller, John A1 - Monier, Adam A1 - Salamov, Asaf A1 - Young, Jeremy A1 - Aguilar, Maria A1 - Claverie, Jean-Michel A1 - Frickenhaus, Stephan A1 - Gonzalez, Karina A1 - Herman, Emily K. A1 - Lin, Yao-Cheng A1 - Napier, Johnathan A1 - Ogata, Hiroyuki A1 - Sarno, Analissa F. A1 - Shmutz, Jeremy A1 - Schroeder, Declan A1 - de Vargas, Colomban A1 - Verret, Frederic A1 - von Dassow, Peter A1 - Valentin, Klaus A1 - Van de Peer, Yves A1 - Wheeler, Glen A1 - Dacks, Joel B. A1 - Delwiche, Charles F. A1 - Dyhrman, Sonya T. A1 - Glöckner, Gernot A1 - John, Uwe A1 - Richards, Thomas A1 - Worden, Alexandra Z. A1 - Zhang, Xiaoyu A1 - Grigoriev, Igor V. A1 - Allen, Andrew E. A1 - Bidle, Kay A1 - Borodovsky, M. A1 - Bowler, C. A1 - Brownlee, Colin A1 - Cock, J. Mark A1 - Elias, Marek A1 - Gladyshev, Vadim N. A1 - Groth, Marco A1 - Guda, Chittibabu A1 - Hadaegh, Ahmad A1 - Iglesias-Rodriguez, Maria Debora A1 - Jenkins, J. A1 - Jones, Bethan M. A1 - Lawson, Tracy A1 - Leese, Florian A1 - Lindquist, Erika A1 - Lobanov, Alexei A1 - Lomsadze, Alexandre A1 - Malik, Shehre-Banoo A1 - Marsh, Mary E. A1 - Mackinder, Luke A1 - Mock, Thomas A1 - Müller-Röber, Bernd A1 - Pagarete, Antonio A1 - Parker, Micaela A1 - Probert, Ian A1 - Quesneville, Hadi A1 - Raines, Christine A1 - Rensing, Stefan A. A1 - Riano-Pachon, Diego Mauricio A1 - Richier, Sophie A1 - Rokitta, Sebastian A1 - Shiraiwa, Yoshihiro A1 - Soanes, Darren M. A1 - van der Giezen, Mark A1 - Wahlund, Thomas M. A1 - Williams, Bryony A1 - Wilson, Willie A1 - Wolfe, Gordon A1 - Wurch, Louie L. T1 - Pan genome of the phytoplankton Emiliania underpins its global distribution JF - Nature : the international weekly journal of science N2 - Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions. Y1 - 2013 U6 - https://doi.org/10.1038/nature12221 SN - 0028-0836 SN - 1476-4687 VL - 499 IS - 7457 SP - 209 EP - 213 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Banks, Jo Ann A1 - Nishiyama, Tomoaki A1 - Hasebe, Mitsuyasu A1 - Bowman, John L. A1 - Gribskov, Michael A1 - dePamphilis, Claude A1 - Albert, Victor A. A1 - Aono, Naoki A1 - Aoyama, Tsuyoshi A1 - Ambrose, Barbara A. A1 - Ashton, Neil W. A1 - Axtell, Michael J. A1 - Barker, Elizabeth A1 - Barker, Michael S. A1 - Bennetzen, Jeffrey L. A1 - Bonawitz, Nicholas D. A1 - Chapple, Clint A1 - Cheng, Chaoyang A1 - Correa, Luiz Gustavo Guedes A1 - Dacre, Michael A1 - DeBarry, Jeremy A1 - Dreyer, Ingo A1 - Elias, Marek A1 - Engstrom, Eric M. A1 - Estelle, Mark A1 - Feng, Liang A1 - Finet, Cedric A1 - Floyd, Sandra K. A1 - Frommer, Wolf B. A1 - Fujita, Tomomichi A1 - Gramzow, Lydia A1 - Gutensohn, Michael A1 - Harholt, Jesper A1 - Hattori, Mitsuru A1 - Heyl, Alexander A1 - Hirai, Tadayoshi A1 - Hiwatashi, Yuji A1 - Ishikawa, Masaki A1 - Iwata, Mineko A1 - Karol, Kenneth G. A1 - Koehler, Barbara A1 - Kolukisaoglu, Uener A1 - Kubo, Minoru A1 - Kurata, Tetsuya A1 - Lalonde, Sylvie A1 - Li, Kejie A1 - Li, Ying A1 - Litt, Amy A1 - Lyons, Eric A1 - Manning, Gerard A1 - Maruyama, Takeshi A1 - Michael, Todd P. A1 - Mikami, Koji A1 - Miyazaki, Saori A1 - Morinaga, Shin-ichi A1 - Murata, Takashi A1 - Müller-Röber, Bernd A1 - Nelson, David R. A1 - Obara, Mari A1 - Oguri, Yasuko A1 - Olmstead, Richard G. A1 - Onodera, Naoko A1 - Petersen, Bent Larsen A1 - Pils, Birgit A1 - Prigge, Michael A1 - Rensing, Stefan A. A1 - Mauricio Riano-Pachon, Diego A1 - Roberts, Alison W. A1 - Sato, Yoshikatsu A1 - Scheller, Henrik Vibe A1 - Schulz, Burkhard A1 - Schulz, Christian A1 - Shakirov, Eugene V. A1 - Shibagaki, Nakako A1 - Shinohara, Naoki A1 - Shippen, Dorothy E. A1 - Sorensen, Iben A1 - Sotooka, Ryo A1 - Sugimoto, Nagisa A1 - Sugita, Mamoru A1 - Sumikawa, Naomi A1 - Tanurdzic, Milos A1 - Theissen, Guenter A1 - Ulvskov, Peter A1 - Wakazuki, Sachiko A1 - Weng, Jing-Ke A1 - Willats, William W. G. T. A1 - Wipf, Daniel A1 - Wolf, Paul G. A1 - Yang, Lixing A1 - Zimmer, Andreas D. A1 - Zhu, Qihui A1 - Mitros, Therese A1 - Hellsten, Uffe A1 - Loque, Dominique A1 - Otillar, Robert A1 - Salamov, Asaf A1 - Schmutz, Jeremy A1 - Shapiro, Harris A1 - Lindquist, Erika A1 - Lucas, Susan A1 - Rokhsar, Daniel A1 - Grigoriev, Igor V. T1 - The selaginella genome identifies genetic changes associated with the evolution of vascular plants JF - Science N2 - Vascular plants appeared similar to 410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes. Y1 - 2011 U6 - https://doi.org/10.1126/science.1203810 SN - 0036-8075 VL - 332 IS - 6032 SP - 960 EP - 963 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Buratti, Bonnie J. A1 - Thomas, P. C. A1 - Roussos, Elias A1 - Howett, Carly A1 - Seiss, Martin A1 - Hendrix, A. R. A1 - Helfenstein, Paul A1 - Brown, R. H. A1 - Clark, R. N. A1 - Denk, Tilmann A1 - Filacchione, Gianrico A1 - Hoffmann, Holger A1 - Jones, Geraint H. A1 - Khawaja, N. A1 - Kollmann, Peter A1 - Krupp, Norbert A1 - Lunine, Jonathan A1 - Momary, T. W. A1 - Paranicas, Christopher A1 - Postberg, Frank A1 - Sachse, Manuel A1 - Spahn, Frank A1 - Spencer, John A1 - Srama, Ralf A1 - Albin, T. A1 - Baines, K. H. A1 - Ciarniello, Mauro A1 - Economou, Thanasis A1 - Hsu, Hsiang-Wen A1 - Kempf, Sascha A1 - Krimigis, Stamatios M. A1 - Mitchell, Donald A1 - Moragas-Klostermeyer, Georg A1 - Nicholson, Philip D. A1 - Porco, C. C. A1 - Rosenberg, Heike A1 - Simolka, Jonas A1 - Soderblom, Laurence A. T1 - Close Cassini flybys of Saturn’s ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus JF - Science N2 - Saturn’s main ring system is associated with a set of small moons that either are embedded within it or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the ring-grazing orbits of the Cassini mission. Data on the moons’ morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. We find that the optical properties of the moons’ surfaces are determined by two competing processes: contamination by a red material formed in Saturn’s main ring system and accretion of bright icy particles or water vapor from volcanic plumes originating on the moon Enceladus. Y1 - 2019 U6 - https://doi.org/10.1126/science.aat2349 SN - 0036-8075 SN - 1095-9203 VL - 364 IS - 6445 SP - 1053 PB - American Assoc. for the Advancement of Science CY - Washington ER -