TY - JOUR A1 - Mazarei, Elham A1 - Barker, John R. T1 - CH2 + O-2 BT - reaction mechanism, biradical and zwitterionic character, and formation of CH2OO, the simplest Criegee intermediate JF - Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies N2 - The singlet and triplet potential surfaces for the title reaction were investigated using the CBS-QB3 level of theory. The wave functions for some species exhibited multireference character and required the CASPT2/6-31+G(d,p) and CASPT2/aug-cc-pVTZ levels of theory to obtain accurate relative energies. A Natural Bond Orbital Analysis showed that triplet (CH2OO)-C-3 (the simplest Criegee intermediate) and (CH2O2)-C-3 (dioxirane) have mostly polar biradical character, while singlet (CH2OO)-C-1 has some zwitterionic character and a planar structure. Canonical variational transition state theory (CVTST) and master equation simulations were used to analyze the reaction system. CVTST predicts that the rate constant for reaction of (CH2)-C-1 + O-3(2) is more than ten times as fast as the reaction of (CH2)-C-3 ((XB1)-B-3) + O-3(2) and the ratio remains almost independent of temperature from 900 K to 3000 K. The master equation simulations predict that at low pressures the (CH2O)-C-1 + O-3 product set is dominant at all temperatures and the primary yield of OH radicals is negligible below 600 K, due to competition with other primary reactions in this complex system. Y1 - 2021 U6 - https://doi.org/10.1039/d1cp04372b SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 2 SP - 914 EP - 927 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mazarei, Elham A1 - Penschke, Christopher A1 - Saalfrank, Peter T1 - Band gap engineering in two-dimensional materials by functionalization BT - Methylation of graphene and graphene bilayers JF - ACS Omega N2 - Graphene is well-knownfor its unique combination of electricaland mechanical properties. However, its vanishing band gap limitsthe use of graphene in microelectronics. Covalent functionalizationof graphene has been a common approach to address this critical issueand introduce a band gap. In this Article, we systematically analyzethe functionalization of single-layer graphene (SLG) and bilayer graphene(BLG) with methyl (CH3) using periodic density functionaltheory (DFT) at the PBE+D3 level of theory. We also include a comparisonof methylated single-layer and bilayer graphene, as well as a discussionof different methylation options (radicalic, cationic, and anionic).For SLG, methyl coverages ranging from 1/8 to 1/1, (i.e.,the fully methylated analogue of graphane) are considered. We findthat up to a coverage theta of 1/2, graphene readily accepts CH3, with neighbor CH3 groups preferring trans positions. Above theta = 1/2, the tendency to accept further CH3 weakens and the lattice constant increases. The band gapbehaves less regularly, but overall it increases with increasing methylcoverage. Thus, methylated graphene shows potential for developingband gap-tuned microelectronics devices and may offer further functionalizationoptions. To guide in the interpretation of methylation experiments,vibrational signatures of various species are characterized by normal-modeanalysis (NMA), their vibrational density of states (VDOS), and infrared(IR) spectra, the latter two are obtained from ab initio moleculardynamics (AIMD) in combination with a velocity-velocity autocorrelationfunction (VVAF) approach. KW - Adsorption KW - Alkyls KW - Band structure KW - Electrical conductivity KW - Two dimensional materials Y1 - 2023 U6 - https://doi.org/10.1021/acsomega.3c02068 SN - 2470-1343 VL - 8 IS - 24 SP - 22026 EP - 22041 PB - American Chemical Society CY - Washington ER -