TY - JOUR A1 - Zorn, Edgar Ulrich A1 - Le Corvec, Nicolas A1 - Varley, Nick R. A1 - Salzer, Jacqueline T. A1 - Walter, Thomas R. A1 - Navarro-Ochoa, Carlos A1 - Vargas-Bracamontes, Dulce M. A1 - Thiele, Samuel T. A1 - Arámbula Mendoza, Raúl T1 - Load stress controls on directional lava dome growth at Volcan de Colima, Mexico JF - Frontiers in Earth Science N2 - During eruptive activity of andesitic stratovolcanoes, the extrusion of lava domes, their collapse and intermittent explosions are common volcanic hazards. Many lava domes grow in a preferred direction, in turn affecting the direction of lava flows and pyroclastic density currents. Access to active lava domes is difficult and hazardous, so detailed data characterizing lava dome growth are typically limited, keeping the processes controlling the directionality of extrusions unclear. Here we combine TerraSAR-X satellite radar observations with high-resolution airborne photogrammetry to assess morphological changes, and perform finite element modeling to investigate the impact of loading stress on shallow magma ascent directions associated with lava dome extrusion and crater formation at Volcan de Colima, Mexico. The TerraSAR-X data, acquired in similar to 1-m resolution spotlight mode, enable us to derive a chronology of the eruptive processes from intensity-based time-lapse observations of the general crater and dome evolution. The satellite images are complemented by close-range airborne photos, processed by the Structure-from-Motion workflow. This allows the derivation of high-resolution digital elevation models, providing insight into detailed loading and unloading features. During the observation period from Jan-2013 to Feb-2016, we identify a dominantly W-directed dome growth and lava flow production until Jan-2015. In Feb-2015, following the removal of the active summit dome, the surface crater widened and elongated along a NE-SW axis. Later in May-2015, a new dome grew toward the SW of the crater while a separate vent developed in the NE of the crater, reflecting a change in the direction of magma ascent and possible conduit bifurcation. Finite element models show a significant stress change in agreement with the observed magma ascent direction changes in response to the changing surface loads, both for loading (dome growth) and unloading (crater forming excavation) cases. These results allow insight into shallow dome growth dynamics and the migration of magma ascent in response to changing volcano summit morphology. They further highlight the importance of detailed volcano summit morphology surveillance, as changes in direction or location of dome extrusion may have major implications regarding the directions of potential volcanic hazards, such as pyroclastic density currents generated by dome collapse. KW - lava dome KW - load stress KW - Volcan de Colima KW - TerraSAR-X KW - photogrammetry KW - finite element modeling Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00084 SN - 2296-6463 VL - 7 PB - Frontiers Media CY - Lausanne ER - TY - THES A1 - Zorn, Edgar Ulrich T1 - Monitoring lava dome growth and deformation with photogrammetric methods and modelling N2 - Lava domes are severely hazardous, mound-shaped extrusions of highly viscous lava and commonly erupt at many active stratovolcanoes around the world. Due to gradual growth and flank oversteepening, such lava domes regularly experience partial or full collapses, resulting in destructive and far-reaching pyroclastic density currents. They are also associated with cyclic explosive activity as the complex interplay of cooling, degassing, and solidification of dome lavas regularly causes gas pressurizations on the dome or the underlying volcano conduit. Lava dome extrusions can last from days to decades, further highlighting the need for accurate and reliable monitoring data. This thesis aims to improve our understanding of lava dome processes and to contribute to the monitoring and prediction of hazards posed by these domes. The recent rise and sophistication of photogrammetric techniques allows for the extraction of observational data in unprecedented detail and creates ideal tools for accomplishing this purpose. Here, I study natural lava dome extrusions as well as laboratory-based analogue models of lava dome extrusions and employ photogrammetric monitoring by Structure-from-Motion (SfM) and Particle-Image-Velocimetry (PIV) techniques. I primarily use aerial photography data obtained by helicopter, airplanes, Unoccupied Aircraft Systems (UAS) or ground-based timelapse cameras. Firstly, by combining a long time-series of overflight data at Volcán de Colima, México, with seismic and satellite radar data, I construct a detailed timeline of lava dome and crater evolution. Using numerical model, the impact of the extrusion on dome morphology and loading stress is further evaluated and an impact on the growth direction is identified, bearing important implications for the location of collapse hazards. Secondly, sequential overflight surveys at the Santiaguito lava dome, Guatemala, reveal surface motion data in high detail. I quantify the growth of the lava dome and the movement of a lava flow, showing complex motions that occur on different timescales and I provide insight into rock properties relevant for hazard assessment inferred purely by photogrammetric processing of remote sensing data. Lastly, I recreate artificial lava dome and spine growth using analogue modelling under controlled conditions, providing new insights into lava extrusion processes and structures as well as the conditions in which they form. These findings demonstrate the capabilities of photogrammetric data analyses to successfully monitor lava dome growth and evolution while highlighting the advantages of complementary modelling methods to explain the observed phenomena. The results presented herein further bear important new insights and implications for the hazards posed by lava domes. N2 - Lavadome sind kuppelförmige Aufstauungen aus zähflüssiger Lava und bilden sich häufig bei Eruptionen an aktiven Stratovulkanen. Sie stellen dabei oft eine erhebliche Gefahr für Menschen und Infrastruktur dar, weil Lavadome instabil werden können und bei einem Kollaps pyroklastische Ströme (auch Glutlawinen) erzeugen können. Diese können innerhalb von Minuten weite Flächen verwüsten, daher ist die Überwachung von Lavadomen und deren Wachstum mit genauen und zuverlässigen Daten von großer Bedeutung. In dieser Arbeit werden das Wachstum und die Bewegungen von Lavadomen mit fotogrammetrischen Methoden (Vermessungen anhand von Fotos) und mit Modellierungen in drei Teilstudien getestet und untersucht. Dazu wurden Daten sowohl an Lavadomen von Vulkanen in Mexiko und Guatemala als auch mittels künstlich erzeugter Dome im Labor erhoben. Hierbei wurden insbesondere das Structure-from-Motion-Verfahren, bei dem mithilfe einer Serie von Luftaufnahmen ein hochauflösendes 3D-Modell des Lavadoms und des Vulkans erstellt wird, und das Particle-Image-Velocimetry-Verfahren, bei dem aus einer Zeitreihe von Fotos kleinste Bewegungen detailliert gemessen werden können, verwendet. In der ersten Teilstudie wird aus einer Kombination von Überflugsbildern, Radardaten eines Satelliten, und seismischen Daten eine detaillierte Zeitreihe des Lavadom-Wachstums und der Kraterentwickelung am Volcán de Colima, Méxiko, erstellt. Anschließend werden die dabei erfassten Richtungen des Domwachstums mit numerischen Modellen auf Basis der fotogrammetrischen 3D-Modelle simuliert, welche zeigen, dass sich lokale Änderungen der Topografie auf die Wachstumsrichtung auswirken können. In der zweiten Teilstudie werden Drohnen in verschiedenen Zeitintervallen über einen Lavadom am Santa Maria Vulkan, Guatemala, geflogen. Die Überflugsdaten zeigen dabei Bewegungen sowohl an einem Lavastrom als auch ein Anschwellen des Doms mit jeweils unterschiedlichen Geschwindigkeiten. Ferner können die Daten genutzt werden um Oberflächentemperatur und die Viskosität (Zähflüssigkeit) der Lava zu vermessen, welche für die Gefahrenanalyse eine wichtige Rolle spielen. In der dritten Teilstudie werden künstliche Dom-Modelle mithilfe von Sand-Gips-Gemischen erzeugt. Diese können sowohl den Aufbau und Morphologie als auch die internen Strukturen von Lavadomen simulieren und anhand von Zeitraffer-Aufnahmen im Detail nachstellen. Die Ergebnisse zeigen, dass Fotogrammetrie und Modellierungen geeignete Mittel sind um Lavadome sowie deren Entstehungsprozesse und Gefahren zu verfolgen und neue Erkenntnisse zu gewinnen. T2 - Überwachung von Wachstum und Deformation an Lavadomen mit fotogrammetrischen Methoden und Modellierungen KW - Lava dome KW - Lavadom KW - Photogrammetry KW - Fotogrammetrie KW - Volcano KW - Vulkan KW - Analogue Model KW - Analogmodell Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483600 ER -