TY - JOUR A1 - Solly, Emily F. A1 - Schöning, Ingo A1 - Boch, Steffen A1 - Kandeler, Ellen A1 - Marhan, Sven A1 - Michalzik, Beate A1 - Müller, Jörg A1 - Zscheischler, Jakob A1 - Trumbore, Susan E. A1 - Schrumpf, Marion T1 - Factors controlling decomposition rates of fine root litter in temperate forests and grasslands JF - Plant and soil N2 - Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 mu m mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors. Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24 +/- 6 % mass loss after 12 months, mean +/- SD) than beech roots in forest soils (12 +/- 4 %; p < 0.001). Fine root decomposition varied among the three study regions. Land use intensity, in particular N addition, decreased fine root decomposition in grasslands. The initial lignin:N ratio explained 15 % of the variance in grasslands and 11 % in forests. Soil moisture, soil temperature, and C:N ratios of soils together explained 34 % of the variance of the fine root mass loss in grasslands, and 24 % in forests. Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality. KW - Fine roots KW - Decomposition KW - Land use intensity KW - Lignin: N ratio KW - Temperate ecosystems Y1 - 2014 U6 - https://doi.org/10.1007/s11104-014-2151-4 SN - 0032-079X SN - 1573-5036 VL - 382 IS - 1-2 SP - 203 EP - 218 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Müller, Richard G. E. T1 - Klauer, Karl Josef (Hrsg.): Handbuch der Pädagogischen Diagnostik / [rezensiert von] Richard G. E. Müller N2 - rezensiertes Werk: Klauer, Karl Josef (Hrsg.): Handbuch der Pädagogischen Diagnostik. - Bd. 1-2. - Düsseldorf : Pädagogischer Verlag Schwann, 1978 Bd. 1: ISBN 3-590-14425-4 Bd. 2: ISBN 3-590-14426-2 Y1 - 1983 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59518 ER - TY - GEN A1 - Müller, Richard G. E. T1 - Wieczerkowski, Wilhelm ; Oeveste, Hans zur: Lehrbuch der Entwicklungspsychologie / [rezensiert von] Richard G.E. Müller N2 - rezensiertes Werk: Wieczerkowski, Wilhelm ; Oeveste, Hans zur: Lehrbuch der Entwicklungspsychologie. - Bd. 1-3. - Düsseldorf : Pädagogischer Verlag Schwann, 1982 Bd. 1: ISBN 3-590-14386-X Bd. 2: ISBN 3-590-14387-8 Bd. 3: ISBN 3-590-14388-6 Y1 - 1983 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59529 ER - TY - GEN A1 - Müller, Richard G. E. T1 - Kerkhoff, Engelbert: Handbuch Praxis der Sozialarbeit und Sozialpädagogik / [rezensiert von] Richard G. E. Müller N2 - rezensiertes Werk: Kerkhoff, Engelbert: Handbuch Praxis der Sozialarbeit und Sozialpädagogik. - Bd. 1-2. - Düsseldorf : Pädagogischer Verlag Schwann, 1981 Bd. 1: ISBN 3-590-14379-7 Bd. 2: ISBN 3-590-14380-0 Y1 - 1983 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59535 ER - TY - GEN A1 - Müller, Richard G. E. T1 - Merz, Karl: Kinder mit Schulschwierigkeiten. Empirische Untersuchungen an Grund- und Sonderschulen / [rezensiert von] Richard G. E. Müller N2 - rezensiertes Werk: Merz, Karl: Kinder mit Schulschwierigkeiten. Empirische Untersuchungen an Grund- und Sonderschulen. - Weinheim u.a. : Beltz, 1982. - 395 S. ISBN 3-407-58151-3 Y1 - 1983 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59548 ER - TY - JOUR A1 - Soliveres, Santiago A1 - van der Plas, Fons A1 - Manning, Peter A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Renner, Swen C. A1 - Alt, Fabian A1 - Arndt, Hartmut A1 - Baumgartner, Vanessa A1 - Binkenstein, Julia A1 - Birkhofer, Klaus A1 - Blaser, Stefan A1 - Blüthgen, Nico A1 - Boch, Steffen A1 - Böhm, Stefan A1 - Börschig, Carmen A1 - Buscot, Francois A1 - Diekötter, Tim A1 - Heinze, Johannes A1 - Hölzel, Norbert A1 - Jung, Kirsten A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Klemmer, Sandra A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Müller, Jörg A1 - Oelmann, Yvonne A1 - Overmann, Jörg A1 - Pasalic, Esther A1 - Rillig, Matthias C. A1 - Schaefer, H. Martin A1 - Schloter, Michael A1 - Schmitt, Barbara A1 - Schöning, Ingo A1 - Schrumpf, Marion A1 - Sikorski, Johannes A1 - Socher, Stephanie A. A1 - Solly, Emily F. A1 - Sonnemann, Ilja A1 - Sorkau, Elisabeth A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Stempfhuber, Barbara A1 - Tschapka, Marco A1 - Türke, Manfred A1 - Venter, Paul C. A1 - Weiner, Christiane N. A1 - Weisser, Wolfgang W. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wilcke, Wolfgang A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Wurst, Susanne A1 - Fischer, Markus A1 - Allan, Eric T1 - Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality JF - Nature : the international weekly journal of science Y1 - 2016 U6 - https://doi.org/10.1038/nature19092 SN - 0028-0836 SN - 1476-4687 VL - 536 SP - 456 EP - + PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zwickel, Theresa A1 - Kahl, Sandra M. A1 - Klaffke, Horst A1 - Rychlik, Michael A1 - Müller, Marina E. H. T1 - Spotlight on the Underdogs-An Analysis of Underrepresented Alternaria Mycotoxins Formed Depending on Varying Substrate, Time and Temperature Conditions JF - Toxins N2 - Alternaria (A.) is a genus of widespread fungi capable of producing numerous, possibly health-endangering Alternaria toxins (ATs), which are usually not the focus of attention. The formation of ATs depends on the species and complex interactions of various environmental factors and is not fully understood. In this study the influence of temperature (7 degrees C, 25 degrees C), substrate (rice, wheat kernels) and incubation time (4, 7, and 14 days) on the production of thirteen ATs and three sulfoconjugated ATs by three different Alternaria isolates from the species groups A. tenuissima and A. infectoria was determined. High-performance liquid chromatography coupled with tandem mass spectrometry was used for quantification. Under nearly all conditions, tenuazonic acid was the most extensively produced toxin. At 25 degrees C and with increasing incubation time all toxins were formed in high amounts by the two A. tenuissima strains on both substrates with comparable mycotoxin profiles. However, for some of the toxins, stagnation or a decrease in production was observed from day 7 to 14. As opposed to the A. tenuissima strains, the A. infectoria strain only produced low amounts of ATs, but high concentrations of stemphyltoxin III. The results provide an essential insight into the quantitative in vitro AT formation under different environmental conditions, potentially transferable to different field and storage conditions. KW - Alternaria infectoria KW - A. tenuissima KW - mycotoxin profile KW - wheat KW - rice KW - Alternaria toxin sulfates KW - modified Alternaria toxins KW - altertoxins KW - altenuic acid KW - HPLC-MS/MS Y1 - 2016 U6 - https://doi.org/10.3390/toxins8110344 SN - 2072-6651 VL - 8 SP - 570 EP - 583 PB - MDPI CY - Basel ER - TY - GEN A1 - Zwickel, Theresa A1 - Kahl, Sandra M. A1 - Klaffke, Horst A1 - Rychlik, Michael A1 - Müller, Marina E. H. T1 - Spotlight on the underdogs BT - an analysis of underrepresented alternaria mycotoxins formed depending on varying substrate, time and temperature conditions N2 - Alternaria (A.) is a genus of widespread fungi capable of producing numerous, possibly health-endangering Alternaria toxins (ATs), which are usually not the focus of attention. The formation of ATs depends on the species and complex interactions of various environmental factors and is not fully understood. In this study the influence of temperature (7 °C, 25 °C), substrate (rice, wheat kernels) and incubation time (4, 7, and 14 days) on the production of thirteen ATs and three sulfoconjugated ATs by three different Alternaria isolates from the species groups A. tenuissima and A. infectoria was determined. High-performance liquid chromatography coupled with tandem mass spectrometry was used for quantification. Under nearly all conditions, tenuazonic acid was the most extensively produced toxin. At 25 °C and with increasing incubation time all toxins were formed in high amounts by the two A. tenuissima strains on both substrates with comparable mycotoxin profiles. However, for some of the toxins, stagnation or a decrease in production was observed from day 7 to 14. As opposed to the A. tenuissima strains, the A. infectoria strain only produced low amounts of ATs, but high concentrations of stemphyltoxin III. The results provide an essential insight into the quantitative in vitro AT formation under different environmental conditions, potentially transferable to different field and storage conditions T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 353 KW - Alternaria infectoria KW - A. tenuissima KW - mycotoxin profile KW - wheat KW - rice KW - Alternaria toxin sulfates KW - modified Alternaria toxins KW - altertoxins KW - altenuic acid KW - HPLC-MS/MS Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400438 ER - TY - GEN A1 - Zwickel, Theresa A1 - Kahl, Sandra M. A1 - Rychlik, Michael A1 - Müller, Marina E. H. T1 - Chemotaxonomy of mycotoxigenic small-spored Alternaria fungi BT - do multitoxin mixtures act as an indicator for species differentiation? T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Necrotrophic as well as saprophytic small-spored Altemaria (A.) species are annually responsible for major losses of agricultural products, such as cereal crops, associated with the contamination of food and feedstuff with potential health-endangering Altemaria toxins. Knowledge of the metabolic capabilities of different species-groups to form mycotoxins is of importance for a reliable risk assessment. 93 Altemaria strains belonging to the four species groups Alternaria tenuissima, A. arborescens, A. altemata, and A. infectoria were isolated from winter wheat kernels harvested from fields in Germany and Russia and incubated under equal conditions. Chemical analysis by means of an HPLC-MS/MS multi-Alternaria-toxin-method showed that 95% of all strains were able to form at least one of the targeted 17 non-host specific Altemaria toxins. Simultaneous production of up to 15 (modified) Altemaria toxins by members of the A. tenuissima, A. arborescens, A. altemata species-groups and up to seven toxins by A. infectoria strains was demonstrated. Overall tenuazonic acid was the most extensively formed mycotoxin followed by alternariol and alternariol mono methylether, whereas altertoxin I was the most frequently detected toxin. Sulfoconjugated modifications of alternariol, alternariol mono methylether, altenuisol and altenuene were frequently determined. Unknown perylene quinone derivatives were additionally detected. Strains of the species-group A. infectoria could be segregated from strains of the other three species-groups due to significantly lower toxin levels and the specific production of infectopyrone. Apart from infectopyrone, alterperylenol was also frequently produced by 95% of the A. infectoria strains. Neither by the concentration nor by the composition of the targeted Altemaria toxins a differentiation between the species-groups A. altemata, A. tenuissima and A. arborescens was possible. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 696 KW - small-spored Alternaria fungi KW - Alternaria species-groups KW - Alternaria mycotoxins KW - chemotaxonomy KW - secondary metabolite profiling KW - LC-MS/MS KW - wheat KW - perylene quinone derivatives Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426623 SN - 1866-8372 IS - 696 ER - TY - GEN A1 - Rubey, Michael A1 - Brune, Sascha A1 - Heine, Christian A1 - Davies, D. Rhodri A1 - Williams, Simon E. A1 - Müller, R. Dietmar T1 - Global patterns in Earth’s dynamic topography since the Jurassic BT - the role of subducted slabs T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models. These models are Earth-like in terms of convective vigour, thermal structure, surface heat-flux and the geographic distribution of heterogeneity. The models generate a degree-2-dominated spectrum of dynamic topography with negative amplitudes above subducted slabs (i.e. circum-Pacific regions and southern Eurasia) and positive amplitudes elsewhere (i.e. Africa, north-western Eurasia and the central Pacific). Model predictions are compared with published observations and subsidence patterns from well data, both globally and for the Australian and southern African regions. We find that our models reproduce the long-wavelength component of these observations, although observed smaller-scale variations are not reproduced. We subsequently define "geodynamic rules" for how different surface tectonic settings are affected by mantle processes: (i) locations in the vicinity of a subduction zone show large negative dynamic topography amplitudes; (ii) regions far away from convergent margins feature long-term positive dynamic topography; and (iii) rapid variations in dynamic support occur along the margins of overriding plates (e.g. the western US) and at points located on a plate that rapidly approaches a subduction zone (e.g. India and the Arabia Peninsula). Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution, thus improving our understanding of how subduction and mantle convection affect the spatio-temporal evolution of basin architecture. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 623 KW - spherical mantle convection KW - southern African plateau KW - vertical motion KW - sea-level KW - seismic tomography KW - models KW - surface KW - gravity KW - lithosphere KW - Australia Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418241 SN - 1866-8372 IS - 623 SP - 899 EP - 919 ER - TY - JOUR A1 - Banks, Jo Ann A1 - Nishiyama, Tomoaki A1 - Hasebe, Mitsuyasu A1 - Bowman, John L. A1 - Gribskov, Michael A1 - dePamphilis, Claude A1 - Albert, Victor A. A1 - Aono, Naoki A1 - Aoyama, Tsuyoshi A1 - Ambrose, Barbara A. A1 - Ashton, Neil W. A1 - Axtell, Michael J. A1 - Barker, Elizabeth A1 - Barker, Michael S. A1 - Bennetzen, Jeffrey L. A1 - Bonawitz, Nicholas D. A1 - Chapple, Clint A1 - Cheng, Chaoyang A1 - Correa, Luiz Gustavo Guedes A1 - Dacre, Michael A1 - DeBarry, Jeremy A1 - Dreyer, Ingo A1 - Elias, Marek A1 - Engstrom, Eric M. A1 - Estelle, Mark A1 - Feng, Liang A1 - Finet, Cedric A1 - Floyd, Sandra K. A1 - Frommer, Wolf B. A1 - Fujita, Tomomichi A1 - Gramzow, Lydia A1 - Gutensohn, Michael A1 - Harholt, Jesper A1 - Hattori, Mitsuru A1 - Heyl, Alexander A1 - Hirai, Tadayoshi A1 - Hiwatashi, Yuji A1 - Ishikawa, Masaki A1 - Iwata, Mineko A1 - Karol, Kenneth G. A1 - Koehler, Barbara A1 - Kolukisaoglu, Uener A1 - Kubo, Minoru A1 - Kurata, Tetsuya A1 - Lalonde, Sylvie A1 - Li, Kejie A1 - Li, Ying A1 - Litt, Amy A1 - Lyons, Eric A1 - Manning, Gerard A1 - Maruyama, Takeshi A1 - Michael, Todd P. A1 - Mikami, Koji A1 - Miyazaki, Saori A1 - Morinaga, Shin-ichi A1 - Murata, Takashi A1 - Müller-Röber, Bernd A1 - Nelson, David R. A1 - Obara, Mari A1 - Oguri, Yasuko A1 - Olmstead, Richard G. A1 - Onodera, Naoko A1 - Petersen, Bent Larsen A1 - Pils, Birgit A1 - Prigge, Michael A1 - Rensing, Stefan A. A1 - Mauricio Riano-Pachon, Diego A1 - Roberts, Alison W. A1 - Sato, Yoshikatsu A1 - Scheller, Henrik Vibe A1 - Schulz, Burkhard A1 - Schulz, Christian A1 - Shakirov, Eugene V. A1 - Shibagaki, Nakako A1 - Shinohara, Naoki A1 - Shippen, Dorothy E. A1 - Sorensen, Iben A1 - Sotooka, Ryo A1 - Sugimoto, Nagisa A1 - Sugita, Mamoru A1 - Sumikawa, Naomi A1 - Tanurdzic, Milos A1 - Theissen, Guenter A1 - Ulvskov, Peter A1 - Wakazuki, Sachiko A1 - Weng, Jing-Ke A1 - Willats, William W. G. T. A1 - Wipf, Daniel A1 - Wolf, Paul G. A1 - Yang, Lixing A1 - Zimmer, Andreas D. A1 - Zhu, Qihui A1 - Mitros, Therese A1 - Hellsten, Uffe A1 - Loque, Dominique A1 - Otillar, Robert A1 - Salamov, Asaf A1 - Schmutz, Jeremy A1 - Shapiro, Harris A1 - Lindquist, Erika A1 - Lucas, Susan A1 - Rokhsar, Daniel A1 - Grigoriev, Igor V. T1 - The selaginella genome identifies genetic changes associated with the evolution of vascular plants JF - Science N2 - Vascular plants appeared similar to 410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes. Y1 - 2011 U6 - https://doi.org/10.1126/science.1203810 SN - 0036-8075 VL - 332 IS - 6032 SP - 960 EP - 963 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Gomez-Merino, Fernando Carlos A1 - Brearley, C. A. A1 - Ornatowska, Magdalena A1 - Abdel-Haliem, Mahmoud E. F. A1 - Zanor, Maria Ines A1 - Müller-Röber, Bernd T1 - AtDGK2, a novel diacylglycerol kinase from Arabidopsis thaliana, phosphorylates 1-stearoyl-2-arachidonoyl-sn- glycerol and 1,2-dioleoyl-sn-glycerol and exhibits cold-inducible gene expression N2 - Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). Both DAG and PA are implicated in signal transduction pathways. DGKs have been widely studied in animals, but their analysis in plants is fragmentary. Here, we report the cloning and biochemical characterization of AtDGK2, encoding DGK from Arabidopsis thaliana. AtDGK2 has a predicted molecular mass of 79.4 kDa and, like AtDGK1 previously reported, harbors two copies of a phorbol ester/DAG-binding domain in its N-terminal region. AtDGK2 belongs to a family of seven DGK genes in A. thaliana. AtDGK3 to AtDGK7 encode similar to55-kDa DGKs that lack a typical phorbol ester/DAG-binding domain. Phylogenetically, plant DGKs fall into three clusters. Members of all three clusters are widely expressed in vascular plants. Recombinant AtDGK2 was expressed in Escherichia coli and biochemically characterized. The enzyme phosphorylated 1,2-dioleoyl-sn-glycerol to yield PA, exhibiting Michaelis-Menten type kinetics. Estimated K-m and V-max values were 125 muM for DAG and 0.25 pmol of PA min(-1) mug(-1), respectively. The enzyme was maximally active at pH 7.2. Its activity was Mg2+-dependent and affected by the presence of detergents, salts, and the DGK inhibitor R59022, but not by Ca2+. AtDGK2 exhibited substrate preference for unsaturated DAG analogues (i.e. 1-stearoyl-2-arachidonoyl-sn-glycerol and 1,2- dioleoyl-sn-glycerol). The AtDGK2 gene is expressed in various tissues of the Arabidopsis plant, including leaves, roots, and flowers, as shown by Northern blot analysis and promoter-reporter gene fusions. We found that AtDGK2 is induced by exposure to low temperature (4degreesC), pointing to a role in cold signal transduction Y1 - 2004 SN - 0021-9258 ER - TY - JOUR A1 - Scarpeci, Telma E. A1 - Zanor, Maria I. A1 - Müller-Röber, Bernd A1 - Valle, Estela M. T1 - Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana JF - PLANT MOLECULAR BIOLOGY N2 - AtWRKY30 belongs to a higher plant transcription factor superfamily, which responds to pathogen attack. In previous studies, the AtWRKY30 gene was found to be highly and rapidly induced in Arabidopsis thaliana leaves after oxidative stress treatment. In this study, electrophoretic mobility shift assays showed that AtWRKY30 binds with high specificity and affinity to the WRKY consensus sequence (W-box), and also to its own promoter. Analysis of the AtWRKY30 expression pattern by qPCR and using transgenic Arabidopsis lines carrying AtWRKY30 promoter-beta-glucuronidase fusions showed transcriptional activity in leaves subjected to biotic or abiotic stress. Transgenic Arabidopsis plants constitutively overexpressing AtWRKY30 (35S::W30 lines) were more tolerant than wild-type plants to oxidative and salinity stresses during seed germination. The results presented here show that AtWRKY30 is responsive to several stress conditions either from abiotic or biotic origin, suggesting that AtWRKY30 could have a role in the activation of defence responses at early stages of Arabidopsis growth by binding to W-boxes found in promoters of many stress/developmentally regulated genes. KW - Antioxidant response KW - Chloroplast KW - Germination KW - Oxidative stress KW - Stress signaling Y1 - 2013 U6 - https://doi.org/10.1007/s11103-013-0090-8 SN - 0167-4412 VL - 83 IS - 3 SP - 265 EP - 277 PB - SPRINGER CY - DORDRECHT ER - TY - JOUR A1 - Junginger, Mathias A1 - Kübel, Christian A1 - Schacher, Felix H. A1 - Müller, Axel H. E. A1 - Taubert, Andreas T1 - Crystal structure and chemical composition of biomimetric calcium phosphate nanofibers N2 - Calcium phosphate nanofibers with a diameter of only a few nanometers and a cotton-ball-like aggregate morphology have been reported several times in the literature. Although fiber formation seems reproducible in a variety of conditions, the crystal structure and chemical composition of the fibers have been elusive. Using scanning transmission electron microscopy, low dose electron (nano)diffraction, energy-dispersive X-ray spectroscopy, and energy- filtered transmission electron microscopy, we have assigned crystal structures and chemical compositions to the fibers. Moreover, we demonstrate that the mineralization process yields true polymer/calcium phosphate hybrid materials where the block copolymer template is closely associated with the calcium phosphate. Y1 - 2013 UR - http://pubs.rsc.org/en/content/articlepdf/2013/ra/c3ra23348k U6 - https://doi.org/10.1039/c3ra23348k ER - TY - JOUR A1 - Junginger, Mathias A1 - Kübel, Christian A1 - Schacher, Felix H. A1 - Müller, Axel H. E. A1 - Taubert, Andreas T1 - Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers JF - RSC Advances N2 - Calcium phosphate nanofibers with a diameter of only a few nanometers and a cotton-ball-like aggregate morphology have been reported several times in the literature. Although fiber formation seems reproducible in a variety of conditions, the crystal structure and chemical composition of the fibers have been elusive. Using scanning transmission electron microscopy, low dose electron (nano) diffraction, energy-dispersive X-ray spectroscopy, and energy-filtered transmission electron microscopy, we have assigned crystal structures and chemical compositions to the fibers. Moreover, we demonstrate that the mineralization process yields true polymer/calcium phosphate hybrid materials where the block copolymer template is closely associated with the calcium phosphate. Y1 - 2013 U6 - https://doi.org/10.1039/c3ra23348k SN - 2046-2069 VL - 3 IS - 28 SP - 11301 EP - 11308 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Raatz, Larissa A1 - Bacchi, Nina A1 - Pirhofer Walzl, Karin A1 - Glemnitz, Michael A1 - Müller, Marina E. H. A1 - Jasmin Radha, Jasmin A1 - Scherber, Christoph T1 - How much do we really lose? BT - Yield losses in the proximity of natural landscape elements in agricultural landscapes JF - Ecology and Evolution N2 - Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large‐scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field‐to‐field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid‐field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log‐scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near Göttingen, and 2015–2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11%–38% in comparison with mid‐field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95% of mid‐field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in‐field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes. KW - crop production KW - ecosystem services KW - land sharing vs. land sparing KW - natural habitats KW - edge effect KW - winter wheat Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5370 SN - 2045-7758 VL - 9 IS - 13 SP - 7838 EP - 7848 PB - John Wiley & Sons CY - S.I. ER - TY - JOUR A1 - Raatz, Larissa A1 - Bacchi, Nina A1 - Walzl, Karin Pirhofer A1 - Glemnitz, Michael A1 - Müller, Marina E. H. A1 - Jasmin Radha, Jasmin A1 - Scherber, Christoph T1 - How much do we really lose? BT - yield losses in the proximity of natural landscape elements in agricultural landscapes JF - Ecology and evolution N2 - Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near Gottingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11%-38% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes. KW - crop production KW - ecosystem services KW - edge effect KW - land sharing vs KW - land sparing KW - natural habitats KW - winter wheat Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5370 SN - 2045-7758 VL - 9 IS - 13 SP - 7838 EP - 7848 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Junginger, Mathias A1 - Kübel, Christian A1 - Schacher, Felix H. A1 - Müller, Axel H. E. A1 - Taubert, Andreas T1 - Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers N2 - Calcium phosphate nanofibers with a diameter of only a few nanometers and a cotton-ball-like aggregate morphology have been reported several times in the literature. Although fiber formation seems reproducible in a variety of conditions, the crystal structure and chemical composition of the fibers have been elusive. Using scanning transmission electron microscopy, low dose electron (nano)diffraction, energy-dispersive X-ray spectroscopy, and energy-filtered transmission electron microscopy, we have assigned crystal structures and chemical compositions to the fibers. Moreover, we demonstrate that the mineralization process yields true polymer/calcium phosphate hybrid materials where the block copolymer template is closely associated with the calcium phosphate. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 244 KW - air-water-interface KW - polycationic monolayer KW - mineralization beneath KW - block-copolymers KW - aqueous-solution KW - morphology KW - orthophosphates KW - biomaterials KW - nucleation KW - clusters Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95176 SP - 11301 EP - 11308 ER - TY - JOUR A1 - Martiel, Isabelle A1 - Müller-Werkmeister, Henrike A1 - Cohen, Aina E. T1 - Strategies for sample delivery for femtosecond crystallography JF - Acta Crystallographica : Section D, Structural biology N2 - Highly efficient data-collection methods are required for successful macromolecular crystallography (MX) experiments at X-ray free-electron lasers (XFELs). XFEL beamtime is scarce, and the high peak brightness of each XFEL pulse destroys the exposed crystal volume. It is therefore necessary to combine diffraction images from a large number of crystals (hundreds to hundreds of thousands) to obtain a final data set, bringing about sample-refreshment challenges that have previously been unknown to the MX synchrotron community. In view of this experimental complexity, a number of sample delivery methods have emerged, each with specific requirements, drawbacks and advantages. To provide useful selection criteria for future experiments, this review summarizes the currently available sample delivery methods, emphasising the basic principles and the specific sample requirements. Two main approaches to sample delivery are first covered: (i) injector methods with liquid or viscous media and (ii) fixed-target methods using large crystals or using microcrystals inside multi-crystal holders or chips. Additionally, hybrid methods such as acoustic droplet ejection and crystal extraction are covered, which combine the advantages of both fixed-target and injector approaches. KW - sample delivery KW - serial femtosecond crystallography KW - protein microcrystals KW - XFELs Y1 - 2019 U6 - https://doi.org/10.1107/S2059798318017953 SN - 2059-7983 SN - 0907-4449 VL - 75 SP - 160 EP - 177 PB - Bognor Regis CY - Wiley ER - TY - GEN A1 - Raatz, Larissa A1 - Bacchi, Nina A1 - Pirhofer Walzl, Karin A1 - Glemnitz, Michael A1 - Müller, Marina E. H. A1 - Jasmin Radha, Jasmin A1 - Scherber, Christoph T1 - How much do we really lose? BT - Yield losses in the proximity of natural landscape elements in agricultural landscapes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large‐scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field‐to‐field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid‐field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log‐scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near Göttingen, and 2015–2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11%–38% in comparison with mid‐field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95% of mid‐field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in‐field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 811 KW - crop production KW - ecosystem services KW - land sharing vs. land sparing KW - natural habitats KW - edge effect KW - winter wheat Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-443313 SN - 1866-8372 IS - 811 ER -