TY - JOUR A1 - Nguyen Le Duy, A1 - Nguyen Viet Du, A1 - Heidbüchel, Ingo A1 - Meyer, Hanno A1 - Weiler, Markus A1 - Merz, Bruno A1 - Apel, Heiko T1 - Identification of groundwater mean transit times of precipitation and riverbank infiltration by two-component lumped parameter models JF - Hydrological processes N2 - Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (delta O-18 and delta H-2), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two-component lumped parameter models (LPMs) that are solved using delta O-18 records. The study illustrates that two-component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low-permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface-groundwater interaction can be conceptualized by exploiting two-component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems. KW - bank infiltration KW - groundwater KW - lumped parameter model KW - mean transit time KW - Mekong Delta KW - stable isotopes Y1 - 2019 U6 - https://doi.org/10.1002/hyp.13549 SN - 0885-6087 SN - 1099-1085 VL - 33 IS - 24 SP - 3098 EP - 3118 PB - Wiley CY - Hoboken ER - TY - THES A1 - Duy, Nguyen Le T1 - Hydrological processes in the Vietnamese Mekong Delta BT - Insights from stable water isotopes and monitoring data analysis BT - Erkenntnisse aus stabilen Wasserisotopen und Überwachungsdatenanalyse N2 - Understanding hydrological processes is of fundamental importance for the Vietnamese national food security and the livelihood of the population in the Vietnamese Mekong Delta (VMD). As a consequence of sparse data in this region, however, hydrologic processes, such as the controlling processes of precipitation, the interaction between surface and groundwater, and groundwater dynamics, have not been thoroughly studied. The lack of this knowledge may negatively impact the long-term strategic planning for sustainable groundwater resources management and may result in insufficient groundwater recharge and freshwater scarcity. It is essential to develop useful methods for a better understanding of hydrological processes in such data-sparse regions. The goal of this dissertation is to advance methodologies that can improve the understanding of fundamental hydrological processes in the VMD, based on the analyses of stable water isotopes and monitoring data. The thesis mainly focuses on the controlling processes of precipitation, the mechanism of surface–groundwater interaction, and the groundwater dynamics. These processes have not been fully addressed in the VMD so far. The thesis is based on statistical analyses of the isotopic data of Global Network of Isotopes in Precipitation (GNIP), of meteorological and hydrological data from Vietnamese agencies, and of the stable water isotopes and monitoring data collected as part of this work. First, the controlling processes of precipitation were quantified by the combination of trajectory analysis, multi-factor linear regression, and relative importance analysis (hereafter, a model‐based statistical approach). The validity of this approach is confirmed by similar, but mainly qualitative results obtained in other studies. The total variation in precipitation isotopes (δ18O and δ2H) can be better explained by multiple linear regression (up to 80%) than single-factor linear regression (30%). The relative importance analysis indicates that atmospheric moisture regimes control precipitation isotopes rather than local climatic conditions. The most crucial factor is the upstream rainfall along the trajectories of air mass movement. However, the influences of regional and local climatic factors vary in importance over the seasons. The developed model‐based statistical approach is a robust tool for the interpretation of precipitation isotopes and could also be applied to understand the controlling processes of precipitation in other regions. Second, the concept of the two-component lumped-parameter model (LPM) in conjunction with stable water isotopes was applied to examine the surface–groundwater interaction in the VMD. A calibration framework was also set up to evaluate the behaviour, parameter identifiability, and uncertainties of two-component LPMs. The modelling results provided insights on the subsurface flow conditions, the recharge contributions, and the spatial variation of groundwater transit time. The subsurface flow conditions at the study site can be best represented by the linear-piston flow distribution. The contributions of the recharge sources change with distance to the river. The mean transit time (mTT) of riverbank infiltration increases with the length of the horizontal flow path and the decreasing gradient between river and groundwater. River water infiltrates horizontally mainly via the highly permeable aquifer, resulting in short mTTs (<40 weeks) for locations close to the river (<200 m). The vertical infiltration from precipitation takes place primarily via a low‐permeable overlying aquitard, resulting in considerably longer mTTs (>80 weeks). Notably, the transit time of precipitation infiltration is independent of the distance to the river. All these results are hydrologically plausible and could be quantified by the presented method for the first time. This study indicates that the highly complex mechanism of surface–groundwater interaction at riverbank infiltration systems can be conceptualized by exploiting two‐component LPMs. It is illustrated that the model concept can be used as a tool to investigate the hydrological functioning of mixing processes and the flow path of multiple water components in riverbank infiltration systems. Lastly, a suite of time series analysis approaches was applied to examine the groundwater dynamics in the VMD. The assessment was focused on the time-variant trends of groundwater levels (GWLs), the groundwater memory effect (representing the time that an aquifer holds water), and the hydraulic response between surface water and multi-layer alluvial aquifers. The analysis indicates that the aquifers act as low-pass filters to reduce the high‐frequency signals in the GWL variations, and limit the recharge to the deep groundwater. The groundwater abstraction has exceeded groundwater recharge between 1997 and 2017, leading to the decline of groundwater levels (0.01-0.55 m/year) in all considered aquifers in the VMD. The memory effect varies according to the geographical location, being shorter in shallow aquifers and flood-prone areas and longer in deep aquifers and coastal regions. Groundwater depth, season, and location primarily control the variation of the response time between the river and alluvial aquifers. These findings are important contributions to the hydrogeological literature of a little-known groundwater system in an alluvial setting. It is suggested that time series analysis can be used as an efficient tool to understand groundwater systems where resources are insufficient to develop a physical-based groundwater model. This doctoral thesis demonstrates that important aspects of hydrological processes can be understood by statistical analysis of stable water isotope and monitoring data. The approaches developed in this thesis can be easily transferred to regions in similar tropical environments, particularly those in alluvial settings. The results of the thesis can be used as a baseline for future isotope-based studies and contribute to the hydrogeological literature of little-known groundwater systems in the VMD. N2 - Ein fundiertes Verständnis der hydrologischen Prozesse im vietnamesischen Mekong Delta (VMD) ist von grundlegender Bedeutung für den Lebensunterhalt der Bevölkerung im Mekong Delta, und darüber hinaus auch für die nationale Ernährungssicherheit. Aufgrund des Fehlens einer belastbaren Datenbasis konnten bislang eine Reihe von wichtigen hydrologischen Prozessen nur unzureichend untersucht und quantifiziert werden. Dazu zählen unter anderem die Analyse des Ursprungs des Niederschlages im Delta, die Interaktion zwischen Oberflächen- und Grundwasser, sowie die Grundwasserdynamik. Diese Lücken im Wissensstand verhindern eine solide datenbasierte Wasserwirtschaftsplanung, was unter Berücksichtigung der derzeitigen Trends mittelfristig zu weiter fallenden Grundwasserständen und Wasserknappheit führen wird. Daher ist es von großer Bedeutung, Methoden und Werkzeuge zu entwickeln, die auch unter der bestehenden Datenknappheit belastbare quantitative Ergebnisse für eine nachhaltige Wasserbewirtschaftung liefern können. Das Ziel dieser Dissertation ist es, solche Methoden zu entwickeln und zu testen, um grundlegende hydrologische Prozesse im VMD besser verstehen und quantifizieren zu können. Hierzu werden die existierenden Messdaten sowie im Rahmen dieser Arbeit gesammelte Daten zum Gehalt an stabilen Wasserisotopen verwendet. Mit Hilfe dieser Daten wurden folgende Prozesse untersucht: 1. Der Ursprung und die Fraktionierung des Niederschlages im VMD. 2. Die Interaktion zwischen Oberflächen- und Grundwasser mit einem besonderen Fokus auf die ufernahen Gebiete. 3. Die großflächige Dynamik in den verschiedenen Grundwasserleitern der letzten Jahrzehnte. Die Prozesse, die den Ursprung und die Verteilung des Niederschlagsbestimmen, wurden mittels einer Kombination aus Isotopendaten, Trajektorienanalyse, multifaktorieller Regression, und relativer Wichtigkeitsanalyse untersucht. Diese Kombination ist nachfolgend „modelbasierter statistischer Ansatz“ betitelt. Hierbei wurde festgestellt, dass die Varianz im Isotopengehalt des Niederschlags (δ18O and δ2H) mit der multifaktoriellen Regression zu 80% erklärt werden konnte, was im Vergleich zu einer einfachen Regression mit 30% erklärter Varianz eine deutliche Verbesserung darstellt. Die Wichtigkeitsanalyse ergab zudem, dass großskalige atmosphärische Feuchtigkeitsverteilungen einen weitaus größeren Einfluss auf die Isotopenverteilung im Niederschlag haben, als lokale klimatische Bedingungen im VMD. Der hierbei wichtigste Faktor ist die Regenmenge entlang der Trajektorien der Luftmassenbewegungen. Die Wichtigkeit der Faktoren variiert jedoch saisonal zwischen Regen- und Trockenzeit. Der in dieser Dissertation entwickelte modelbasierte statistische Ansatz ist ein robustes Werkzeug zur Analyse und Interpretation der Isotopenverteilung im Niederschlag, der auch auf ähnliche Fragestellungen in andere Regionen übertragbar ist. Im zweiten Teil der Dissertation wurden Zweikomponentenmodelle (LPM) in Verbindung mit Isotopenmessungen im Niederschlag, Oberflächen- und Grundwasser verwendet, um die Interaktion zwischen Oberflächen- und Grundwasser qualitativ und quantitativ zu beschreiben. Verschiedene Modellansätze wurden hierbei in einem automatischen Kalibrieransatz getestet, und deren Unsicherheit bestimmt. Hierbei hat sich das lineare Kolbenfließmodell (linear piston flow model) als das am besten geeignetste herausgestellt. Die Modellierungsergebnisse ermöglichten daraufhin eine modellbasierte Abschätzung der Grundwasserschwankungen und -flüsse, der Grundwasserneubildung und der räumlichen Variabilität der Grundwasserlaufzeiten. Hierbei zeigte sich, dass Grundwasserneubildung und deren Quellen räumlich variabel ist, und sich mit zunehmender Entfernung vom Fluss die Neubildung von primär Uferinfiltration hin zu Neubildung durch Niederschläge ändert. Analog dazu erhöhen sich die Grundwasserlaufzeiten mit der Länge der horizontalen Fließwege (= Entfernung vom Vorfluter) und mit sinkendem Gradienten zwischen Grundwasserstand und Wasserstand im Fluss. Flusswasser infiltriert über das Flussufer in den wasserleitenden Aquifer, mit mittleren Transferzeiten (mTT) von < 40 Wochen für Bereiche mit weniger als 200 m Entfernung zum Fluss. In größeren Entfernungen findet die Neubildung im Wesentlichen durch Versickerung von Regenwaser statt. Da der betrachtete holozäne Grundwasserleiter mit einer schwerdurchlässigen Deckschicht überlagert ist, liegen die mTT in diesen Bereichen mit > 80 Wochen wesentlich höher. Es konnte mit dieser Studie gezeigt werden, dass die komplexe Interaktion zwischen Grund- und Oberflächenwasser mittels eines konzeptionellen Modells in Verbindung mit aus Wasserproben bestimmten Isotopendaten konzeptionalisiert und quantifiziert werden kann. Der Ansatz empfiehlt sich daher als Werkzeug für die Untersuchung der Mischungsprozesse der Ufer- und Regenwasserinfiltration, sowie der Fließwege des Grundwassers in ähnlichen Gebieten. Im letzten Teil der Dissertation wurden Trends in den Grundwasserständen im gesamtem VMD untersucht. Hierzu wurde eine Reihe von Methoden zur Zeitreihenanalyse angewandt. Der Fokus der Untersuchungen lag auf zeitvariablen Trends in den Grundwasserständen, der Wasserspeicherdauer (memory effect), und der hydraulischen Reaktionszeit zwischen dem Oberflächenwasser und den verschiedenen Aquiferen im VMD. Die Analyse ergab, dass die verschiedenen Schichten von Aquiferen und Aquitarden wie ein Tiefpassfilter auf die hydraulischen Signale des Oberflächenwassers wirken, was wiederum die Grundwasserneubildung in den tieferen Aquiferen stark reduziert. Die Zeitreihenanalyse ergab, dass die Entnahmemengen an Grundwasser insbesondere in den tieferen, stark genutzten Aquiferen die Neubildung im gesamten Analysezeitraum 1997 – 2017 überschritten hat. Dies führte zu Absenkung des Grundwasserspiegels von 0.01 – 0.55 m pro Jahr in den verschiedenen Aquiferen des VMD. Die Speicherdauer variiert zwischen den verschiedenen Regionen und Aquiferen des VMD. In den flacheren Aquiferen und in der Region mit tiefen Überflutungen während der Hochwassersaison sind die Speicherdauern kürzer, während sie in den tieferen Aquiferen und in den küstennahen Regionen wesentlich länger sind. Die Reaktionszeit variiert ebenfalls im Raum, wobei die wichtigsten Einflussfaktoren der Abstand des Grundwasserspiegels zur Oberfläche, die Saison und die Lage, hier besonders die Entfernung zum Fluss oder der Küste, sind. Diese qualitativen wie quantitativen Ergebnisse fügen wichtige und wesentlich Erkenntnisse zum Wissensstand über das Grundwasser im VMD hinzu. Die verwendeten Methoden empfehlen sich darüber hinaus für die Analyse von Grundwasserdynamiken in alluvialen Aquifersystemen im Generellen, wenn Daten und Ressourcen für ein physisches numerisches Grundwassermodell fehlen. Die vorliegende Dissertation zeigt, dass wichtige hydrologische Prozesse auch über statistische Analysen von Mess- und Isotopendaten quantitativ analysiert werden können. Die Ergebnisse stellen eine Basisanalyse der Grundwasserdynamik und der sie beeinflussenden Prozesse im VMD dar, und sollten in weiteren Studien ausgebaut werden. Die Analyse der Isotopendaten liefert darüber hinaus die Basislinie für hydrologische Analysen mit stabilen Isotopen im VMD und aufgrund der ähnlichen klimatischen und geografischen Lage auch für weite Teile Südostasiens. Die entwickelten Methodenkombinationen können aufgrund ihrer generellen Natur auch problemlos auf andere tropische Regionen, insbesondere solche mit alluvialen Aquiferen, übertragen werden. T2 - Hydrologische Prozesse im Mekong Delta KW - Vietnamese Mekong Delta KW - stable isotopes KW - data analysis KW - hydrological processes KW - Mekong Delta KW - Datenanalyse KW - hydrologische Prozesse KW - stabile Isotope Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-602607 ER - TY - GEN A1 - Duy, Nguyen Le A1 - Heidbüchel, Ingo A1 - Meyer, Hanno A1 - Merz, Bruno A1 - Apel, Heiko T1 - What controls the stable isotope composition of precipitation in the Mekong Delta? BT - a model-based statistical approach T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the Vietnamese Mekong Delta (VMD) as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. In the first step, the isotopic composition of the samples is analyzed by local meteoric water lines (LMWLs) and single-factor linear correlations. Additionally, the contribution of several regional and local factors is quantified by multiple linear regression (MLR) of all possible factor combinations and by relative importance analysis. This approach is novel for the interpretation of isotopic records and enables an objective quantification of the explained variance in isotopic records for individual factors. In this study, the local factors are extracted from local climate records, while the regional factors are derived from atmospheric backward trajectories of water particles. The regional factors, i.e., precipitation, temperature, relative humidity and the length of backward trajectories, are combined with equivalent local climatic parameters to explain the response variables delta O-18, delta H-2, and d-excess of precipitation at the station of measurement. The results indicate that (i) MLR can better explain the isotopic variation in precipitation (R-2 = 0.8) compared to single-factor linear regression (R-2 = 0.3); (ii) the isotopic variation in precipitation is controlled dominantly by regional moisture regimes (similar to 70 %) compared to local climatic conditions (similar to 30 %); (iii) the most important climatic parameter during the rainy season is the precipitation amount along the trajectories of air mass movement; (iv) the influence of local precipitation amount and temperature is not sig-nificant during the rainy season, unlike the regional precipitation amount effect; (v) secondary fractionation processes (e.g., sub-cloud evaporation) can be identified through the d-excess and take place mainly in the dry season, either locally for delta O-18 and delta H-2, or along the air mass trajectories for d-excess. The analysis shows that regional and local factors vary in importance over the seasons and that the source regions and transport pathways, and particularly the climatic conditions along the pathways, have a large influence on the isotopic composition of rainfall. Although the general results have been reported qualitatively in previous studies (proving the validity of the approach), the proposed method provides quantitative estimates of the controlling factors, both for the whole data set and for distinct seasons. Therefore, it is argued that the approach constitutes an advancement in the statistical analysis of isotopic records in rainfall that can supplement or precede more complex studies utilizing atmospheric models. Due to its relative simplicity, the method can be easily transferred to other regions, or extended with other factors. The results illustrate that the interpretation of the isotopic composition of precipitation as a recorder of local climatic conditions, as for example performed for paleorecords of water isotopes, may not be adequate in the southern part of the Indochinese Peninsula, and likely neither in other regions affected by monsoon processes. However, the presented approach could open a pathway towards better and seasonally differentiated reconstruction of paleoclimates based on isotopic records. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 927 KW - Asian summer monsoon KW - interannuel variability KW - climate controls KW - deuterium excess KW - oxygen isotopes KW - paleoclimate KW - water KW - system KW - trajectories KW - circulation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445743 SN - 1866-8372 IS - 927 SP - 1239 EP - 1262 ER - TY - JOUR A1 - Duy, Nguyen Le A1 - Heidbüchel, Ingo A1 - Meyer, Hanno A1 - Merz, Bruno A1 - Apel, Heiko T1 - What controls the stable isotope composition of precipitation in the Mekong Delta? BT - a model-based statistical approach JF - Hydrology and earth system sciences : HESS N2 - This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the Vietnamese Mekong Delta (VMD) as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. In the first step, the isotopic composition of the samples is analyzed by local meteoric water lines (LMWLs) and single-factor linear correlations. Additionally, the contribution of several regional and local factors is quantified by multiple linear regression (MLR) of all possible factor combinations and by relative importance analysis. This approach is novel for the interpretation of isotopic records and enables an objective quantification of the explained variance in isotopic records for individual factors. In this study, the local factors are extracted from local climate records, while the regional factors are derived from atmospheric backward trajectories of water particles. The regional factors, i.e., precipitation, temperature, relative humidity and the length of backward trajectories, are combined with equivalent local climatic parameters to explain the response variables delta O-18, delta H-2, and d-excess of precipitation at the station of measurement. The results indicate that (i) MLR can better explain the isotopic variation in precipitation (R-2 = 0.8) compared to single-factor linear regression (R-2 = 0.3); (ii) the isotopic variation in precipitation is controlled dominantly by regional moisture regimes (similar to 70 %) compared to local climatic conditions (similar to 30 %); (iii) the most important climatic parameter during the rainy season is the precipitation amount along the trajectories of air mass movement; (iv) the influence of local precipitation amount and temperature is not sig-nificant during the rainy season, unlike the regional precipitation amount effect; (v) secondary fractionation processes (e.g., sub-cloud evaporation) can be identified through the d-excess and take place mainly in the dry season, either locally for delta O-18 and delta H-2, or along the air mass trajectories for d-excess. The analysis shows that regional and local factors vary in importance over the seasons and that the source regions and transport pathways, and particularly the climatic conditions along the pathways, have a large influence on the isotopic composition of rainfall. Although the general results have been reported qualitatively in previous studies (proving the validity of the approach), the proposed method provides quantitative estimates of the controlling factors, both for the whole data set and for distinct seasons. Therefore, it is argued that the approach constitutes an advancement in the statistical analysis of isotopic records in rainfall that can supplement or precede more complex studies utilizing atmospheric models. Due to its relative simplicity, the method can be easily transferred to other regions, or extended with other factors. The results illustrate that the interpretation of the isotopic composition of precipitation as a recorder of local climatic conditions, as for example performed for paleorecords of water isotopes, may not be adequate in the southern part of the Indochinese Peninsula, and likely neither in other regions affected by monsoon processes. However, the presented approach could open a pathway towards better and seasonally differentiated reconstruction of paleoclimates based on isotopic records. Y1 - 2018 U6 - https://doi.org/10.5194/hess-22-1239-2018 SN - 1027-5606 SN - 1607-7938 VL - 22 IS - 2 SP - 1239 EP - 1262 PB - Copernicus CY - Göttingen ER -