TY - JOUR A1 - Roda-Boluda, Duna C. A1 - McDonald, Jordan A1 - Whittaker, Alexander C. A1 - D'Arcy, Mitchell T1 - Lithological controls on hillslope sediment supply BT - insights from landslide activity and grain size distributions JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - The volumes, rates and grain size distributions of sediment supplied from hillslopes represent the initial input of sediment delivered from upland areas and propagated through sediment routing systems. Moreover, hillslope sediment supply has a significant impact on landscape response time to tectonic and climatic perturbations. However, there are very few detailed field studies characterizing hillslope sediment supply as a function of lithology and delivery process. Here, we present new empirical data from tectonically-active areas in southern Italy that quantifies how lithology and rock strength control the landslide fluxes and grain size distributions supplied from hillslopes. Landslides are the major source of hillslope sediment supply in this area, and our inventory of similar to 2800 landslides reveals that landslide sediment flux is dominated by small, shallow landslides. We find that lithology and rock strength modulate the abundance of steep slopes and landslides, and the distribution of landslide sizes. Outcrop-scale rock strength also controls the grain sizes supplied by bedrock weathering, and influences the degree of coarsening of landslide supply with respect to weathering supply. Finally, we show that hillslope sediment supply largely determines the grain sizes of fluvial export, from catchments and that catchments with greater long-term landslide rates deliver coarser material. Therefore, our results demonstrate a dual control of lithology on hillslope sediment supply, by modulating both the sediment fluxes from landslides and the grain sizes supplied by hillslopes to the fluvial system. KW - lithology KW - hillslopes KW - landslides KW - grain size KW - sediment supply Y1 - 2018 U6 - https://doi.org/10.1002/esp.4281 SN - 0197-9337 SN - 1096-9837 VL - 43 IS - 5 SP - 956 EP - 977 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Jones, Geraint H. A1 - Arridge, Christopher S. A1 - Coates, Andrew J. A1 - Lewis, Gethyn R. A1 - Kanani, Sheila A1 - Wellbrock, Anne A1 - Young, David T. A1 - Crary, Frank J. A1 - Tokar, Robert L. A1 - Wilson, R. J. A1 - Hill, Thomas W. A1 - Johnson, Robert E. A1 - Mitchell, Donald G. A1 - Schmidt, Jürgen A1 - Kempf, Sascha A1 - Beckmann, Uwe A1 - Russell, Christopher T. A1 - Jia, Y. D. A1 - Dougherty, Michele K. A1 - Waite, J. Hunter A1 - Magee, Brian A. T1 - Fine jet structure of electrically charged grains in Enceladus' plume N2 - By traversing the plume erupting from high southern latitudes on Saturn's moon Enceladus, Cassini orbiter instruments can directly sample the material therein. Cassini Plasma Spectrometer, CAPS, data show that a major plume component comprises previously-undetected particles of nanometer scales and larger that bridge the mass gap between previously observed gaseous species and solid icy grains. This population is electrically charged both negative and positive, indicating that subsurface triboelectric charging, i.e., contact electrification of condensed plume material may occur through mutual collisions within vents. The electric field of Saturn's magnetosphere controls the jets' morphologies, separating particles according to mass and charge. Fine-scale structuring of these particles' spatial distribution correlates with discrete plume jets' sources, and reveals locations of other possible active regions. The observed plume population likely forms a major component of high velocity nanometer particle streams detected outside Saturn's magnetosphere. Y1 - 2009 UR - http://www.agu.org/journals/gl/ U6 - https://doi.org/10.1029/2009gl038284 SN - 0094-8276 ER - TY - JOUR A1 - De Frenne, Pieter A1 - Rodriguez-Sanchez, Francisco A1 - Coomes, David Anthony A1 - Bäten, Lander A1 - Versträten, Gorik A1 - Vellend, Mark A1 - Bernhardt-Römermann, Markus A1 - Brown, Carissa D. A1 - Brunet, Jörg A1 - Cornelis, Johnny A1 - Decocq, Guillaume M. A1 - Dierschke, Hartmut A1 - Eriksson, Ove A1 - Gilliam, Frank S. A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Jenkins, Michael A. A1 - Kelly, Daniel L. A1 - Kirby, Keith J. A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Peterken, George A1 - Petrik, Petr A1 - Schultz, Jan A1 - Sonnier, Gregory A1 - Van Calster, Hans A1 - Waller, Donald M. A1 - Walther, Gian-Reto A1 - White, Peter S. A1 - Woods, Kerry D. A1 - Wulf, Monika A1 - Graae, Bente Jessen A1 - Verheyen, Kris T1 - Microclimate moderates plant responses to macroclimate warming JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity. KW - climate change KW - forest management KW - understory KW - climatic debt KW - range shifts Y1 - 2013 U6 - https://doi.org/10.1073/pnas.1311190110 SN - 0027-8424 VL - 110 IS - 46 SP - 18561 EP - 18565 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Buratti, Bonnie J. A1 - Thomas, P. C. A1 - Roussos, Elias A1 - Howett, Carly A1 - Seiss, Martin A1 - Hendrix, A. R. A1 - Helfenstein, Paul A1 - Brown, R. H. A1 - Clark, R. N. A1 - Denk, Tilmann A1 - Filacchione, Gianrico A1 - Hoffmann, Holger A1 - Jones, Geraint H. A1 - Khawaja, N. A1 - Kollmann, Peter A1 - Krupp, Norbert A1 - Lunine, Jonathan A1 - Momary, T. W. A1 - Paranicas, Christopher A1 - Postberg, Frank A1 - Sachse, Manuel A1 - Spahn, Frank A1 - Spencer, John A1 - Srama, Ralf A1 - Albin, T. A1 - Baines, K. H. A1 - Ciarniello, Mauro A1 - Economou, Thanasis A1 - Hsu, Hsiang-Wen A1 - Kempf, Sascha A1 - Krimigis, Stamatios M. A1 - Mitchell, Donald A1 - Moragas-Klostermeyer, Georg A1 - Nicholson, Philip D. A1 - Porco, C. C. A1 - Rosenberg, Heike A1 - Simolka, Jonas A1 - Soderblom, Laurence A. T1 - Close Cassini flybys of Saturn’s ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus JF - Science N2 - Saturn’s main ring system is associated with a set of small moons that either are embedded within it or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the ring-grazing orbits of the Cassini mission. Data on the moons’ morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. We find that the optical properties of the moons’ surfaces are determined by two competing processes: contamination by a red material formed in Saturn’s main ring system and accretion of bright icy particles or water vapor from volcanic plumes originating on the moon Enceladus. Y1 - 2019 U6 - https://doi.org/10.1126/science.aat2349 SN - 0036-8075 SN - 1095-9203 VL - 364 IS - 6445 SP - 1053 PB - American Assoc. for the Advancement of Science CY - Washington ER -