TY - GEN A1 - Reusser, Dominik A1 - Blume, Theresa A1 - Schaefli, Bettina A1 - Zehe, Erwin T1 - Analysing the temporal dynamics of model performance for hydrological models N2 - The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. This paper presents a method for such a hydrological model performance assessment with a high temporal resolution and illustrates its application for two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with the physicsbased model Catflow. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs) and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The final outcome of the proposed method is a time series of the occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been identified. They show clear temporal patterns, which can lead to the identification of model structural errors. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 140 KW - Rainfall-runoff response KW - Process identification KW - Improved calibration KW - Soil-moisture KW - Catchment Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45114 ER - TY - JOUR A1 - Bürger, Gerd A1 - Reusser, Dominik A1 - Kneis, David T1 - Early flood warnings from empirical (expanded) downscaling of the full ECMWF Ensemble Prediction System Y1 - 2009 UR - http://www.agu.org/journals/wr/ U6 - https://doi.org/10.1029/2009wr007779 SN - 0043-1397 ER - TY - JOUR A1 - Reusser, Dominik Edwin A1 - Zehe, Erwin T1 - Low-cost monitoring of snow height and thermal properties with inexpensive temperature sensors JF - Hydrological processes N2 - Small, self-recording temperature sensors were installed at several heights along a metal rod at five locations in a case study catchment. For each sensor, the presence or absence of snow cover was determined on the basis of its insulating effect and the resulting reduction of the diurnal temperature oscillations. Sensor coverage was then converted into a time series of snow height for each location. Additionally, cold content was calculated. Snow height and cold content provide valuable information for spring flood prediction. Good agreement of estimated snow heights with reference measurements was achieved and increased discharge in the study catchment coincided with low cold content of the snow cover. The results of the proposed distributed assessment of snow cover and snow state show great potential for (i) flood warning, (ii) assimilation of snow state data and (iii) modelling snowmelt process. KW - snow measurements KW - cold content KW - temperature index approach KW - heat diffusion KW - temperature Y1 - 2011 U6 - https://doi.org/10.1002/hyp.7937 SN - 0885-6087 SN - 1099-1085 VL - 25 IS - 12 SP - 1841 EP - 1852 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Reusser, Dominik Edwin A1 - Zehe, Erwin T1 - Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity JF - Water resources research N2 - In this paper we investigate the use of hydrological models as learning tools to help improve our understanding of the hydrological functioning of a catchment. With the model as a hypothetical conceptualization of how dominant hydrological processes contribute to catchment-scale response, we investigate three questions: (1) During which periods does the model (not) reproduce observed quantities and dynamics? (2) What is the nature of the error during times of bad model performance? (3) Which model components are responsible for this error? To investigate these questions, we combine a method for detecting repeating patterns of typical differences between model and observations (time series of grouped errors, TIGER) with a method for identifying the active model components during each simulation time step based on parameter sensitivity (temporal dynamics of parameter sensitivities, TEDPAS). The approach generates a time series of occurrence of dominant error types and time series of parameter sensitivities. A synoptic discussion of these time series highlights deficiencies in the assumptions about the functioning of the catchment. The approach is demonstrated for the Weisseritz headwater catchment in the eastern Ore Mountains. Our results indicate that the WaSiM-ETH complex grid-based model is not a sufficient working hypothesis for the functioning of the Weisseritz catchment and point toward future steps that can help improve our understanding of the catchment. Y1 - 2011 U6 - https://doi.org/10.1029/2010WR009946 SN - 0043-1397 SN - 1944-7973 VL - 47 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Reusser, Dominik Edwin A1 - Buytaert, W. A1 - Zehe, Erwin T1 - Temporal dynamics of model parameter sensitivity for computationally expensive models with the Fourier amplitude sensitivity test JF - Water resources research N2 - The quest for improved hydrological models is one of the big challenges in hydrology. When discrepancies are observed between simulated and measured discharge, it is essential to identify which algorithms may be responsible for poor model behavior. Particularly in complex hydrological models, different process representations may dominate at different moments and interact with each other, thus highly complicating this task. This paper investigates the analysis of the temporal dynamics of parameter sensitivity as a way to disentangle the simulation of a hydrological model and identify dominant parameterizations. Three existing methods (the Fourier amplitude sensitivity test, the extended Fourier amplitude sensitivity test, and Sobol's method) are compared by applying them to a TOPMODEL implementation in a small mountainous catchment in the tropics. For the major part of the simulation period, the three methods give comparable results, while the Fourier amplitude sensitivity test is much more computationally efficient. This method is also applied to the complex hydrological model WaSiM-ETH implemented in the Weisseritz catchment, Germany. A qualitative model validation was performed on the basis of the identification of relevant model components. The validation revealed that the saturation deficit parameterization of WaSiM-ETH is highly susceptible to parameter interaction and lack of identifiability. We conclude that temporal dynamics of model parameter sensitivity can be a powerful tool for hydrological model analysis, especially to identify parameter interaction as well as the dominant hydrological response modes. Finally, an open source implementation of the Fourier amplitude sensitivity test is provided. Y1 - 2011 U6 - https://doi.org/10.1029/2010WR009947 SN - 0043-1397 VL - 47 IS - 4 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Pradhan, Prajal A1 - Fischer, Günther A1 - Velthuizen, Harrij van A1 - Reusser, Dominik Edwin A1 - Kropp, Jürgen T1 - Closing yield gaps BT - how sustainable can we be? T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Global food production needs to be increased by 60-110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45-73%, P2O5-fertilizer by 22-46%, and K2O-fertilizer by 2-3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way management strategies for closing yield gaps are chosen and implemented. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 491 KW - climate-change KW - management KW - intensification KW - productivity KW - agriculture Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408105 SN - 1866-8372 IS - 491 ER - TY - GEN A1 - Fluschnik, Till A1 - Kriewald, Steffen A1 - Ros, Anselmo García Cantú A1 - Zhou, Bin A1 - Reusser, Dominik Edwin A1 - Kropp, Jürgen A1 - Rybski, Diego T1 - The size distribution, scaling properties and spatial organization of urban clusters BT - a global and regional percolation perspective N2 - Human development has far-reaching impacts on the surface of the globe. The transformation of natural land cover occurs in different forms, and urban growth is one of the most eminent transformative processes. We analyze global land cover data and extract cities as defined by maximally connected urban clusters. The analysis of the city size distribution for all cities on the globe confirms Zipf’s law. Moreover, by investigating the percolation properties of the clustering of urban areas we assess the closeness to criticality for various countries. At the critical thresholds, the urban land cover of the countries undergoes a transition from separated clusters to a gigantic component on the country scale. We study the Zipf-exponents as a function of the closeness to percolation and find a systematic dependence, which could be the reason for deviating exponents reported in the literature. Moreover, we investigate the average size of the clusters as a function of the proximity to percolation and find country specific behavior. By relating the standard deviation and the average of cluster sizes—analogous to Taylor’s law—we suggest an alternative way to identify the percolation transition. We calculate spatial correlations of the urban land cover and find long-range correlations. Finally, by relating the areas of cities with population figures we address the global aspect of the allometry of cities, finding an exponent δ ≈ 0.85, i.e., large cities have lower densities. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 356 KW - Zipf’s law KW - city clusters KW - percolation KW - Taylor’s law Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400486 ER - TY - JOUR A1 - Pradhan, Prajal A1 - Reusser, Dominik Edwin A1 - Kropp, Jürgen T1 - Embodied greenhouse gas emissions in Diets JF - PLoS one N2 - Changing food consumption patterns and associated greenhouse gas (GHG) emissions have been a matter of scientific debate for decades. The agricultural sector is one of the major GHG emitters and thus holds a large potential for climate change mitigation through optimal management and dietary changes. We assess this potential, project emissions, and investigate dietary patterns and their changes globally on a per country basis between 1961 and 2007. Sixteen representative and spatially differentiated patterns with a per capita calorie intake ranging from 1,870 to >3,400 kcal/day were derived. Detailed analyses show that low calorie diets are decreasing worldwide, while in parallel diet composition is changing as well: a discernable shift towards more balanced diets in developing countries can be observed and steps towards more meat rich diets as a typical characteristics in developed countries. Low calorie diets which are mainly observable in developing countries show a similar emission burden than moderate and high calorie diets. This can be explained by a less efficient calorie production per unit of GHG emissions in developing countries. Very high calorie diets are common in the developed world and exhibit high total per capita emissions of 3.7-6.1 kg CO2eq./day due to high carbon intensity and high intake of animal products. In case of an unbridled demographic growth and changing dietary patterns the projected emissions from agriculture will approach 20 Gt CO2eq./yr by 2050. Y1 - 2013 U6 - https://doi.org/10.1371/journal.pone.0062228 SN - 1932-6203 VL - 8 IS - 5 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Pradhan, Prajal A1 - Lüdeke, Matthias K. B. A1 - Reusser, Dominik Edwin A1 - Kropp, Jürgen T1 - Food self-sufficiency across scales: How local can we go? JF - Environmental science & technology N2 - This study explores the potential for regions to shift to a local food supply using food self-sufficiency (FSS) as an indicator. We considered a region food self-sufficient when its total calorie production is enough to meet its demand. For future scenarios, we considered population growth, dietary changes, improved feed conversion efficiency, climate change, and crop yield increments. Starting at the 5' resolution, we investigated FSS from the lowest administrative levels to continents. Globally, about 1.9 billion people are self-sufficient within their 5' grid, while about 1 billion people from Asia and Africa require cross-continental agricultural trade in 2000. By closing yield gaps, these regions can achieve FSS, which also reduces international trade and increases a self-sufficient population in a 5' grid to 2.9 billion. The number of people depending on international trade will vary between 1.5 and 6 billion by 2050. Climate change may increase the need for international agricultural trade by 4% to 16%. Y1 - 2014 U6 - https://doi.org/10.1021/es5005939 SN - 0013-936X SN - 1520-5851 VL - 48 IS - 16 SP - 9463 EP - 9470 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Lissner, Tabea Katharina A1 - Reusser, Dominik Edwin A1 - Schewe, Jacob A1 - Lakes, T. A1 - Kropp, Jürgen T1 - Climate impacts on human livelihoods: where uncertainty matters in projections of water availability JF - Earth system dynamics N2 - Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models, as well as greenhouse gas scenarios, are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure what is referred to here as AHEAD (Adequate Human livelihood conditions for wEll-being And Development). Based on a trans-disciplinary sample of concepts addressing human well-being and livelihoods, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows for the uncertainty of climate and impact model projections to be identified and differentiated. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions - and where it is not. The results indicate that livelihood conditions are compromised by water scarcity in 34 countries. However, more often, AHEAD fulfilment is limited through other elements. The analysis shows that the water-specific uncertainty ranges of the model output are outside relevant thresholds for AHEAD for 65 out of 111 countries, and therefore do not contribute to the overall uncertainty about climate change impacts on livelihoods. In 46 of the countries in the analysis, water-specific uncertainty is relevant to AHEAD. The AHEAD method presented here, together with first results, forms an important step towards making scientific results more applicable for policy decisions. Y1 - 2014 U6 - https://doi.org/10.5194/esd-5-355-2014 SN - 2190-4979 SN - 2190-4987 VL - 5 IS - 2 SP - 355 EP - 373 PB - Copernicus CY - Göttingen ER -