TY - GEN A1 - Ayzel, Georgy A1 - Varentsova, Natalia A1 - Erina, Oxana A1 - Sokolov, Dmitriy A1 - Kurochkina, Liubov A1 - Moreydo, Vsevolod T1 - OpenForecast BT - The First Open-Source Operational Runoff Forecasting System in Russia T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The development and deployment of new operational runoff forecasting systems are a strong focus of the scientific community due to the crucial importance of reliable and timely runoff predictions for early warnings of floods and flashfloods for local businesses and communities. OpenForecast, the first operational runoff forecasting system in Russia, open for public use, is presented in this study. We developed OpenForecast based only on open-source software and data-GR4J hydrological model, ERA-Interim meteorological reanalysis, and ICON deterministic short-range meteorological forecasts. Daily forecasts were generated for two basins in the European part of Russia. Simulation results showed a limited efficiency in reproducing the spring flood of 2019. Although the simulations managed to capture the timing of flood peaks, they failed in estimating flood volume. However, further implementation of the parsimonious data assimilation technique significantly alleviates simulation errors. The revealed limitations of the proposed operational runoff forecasting system provided a foundation to outline its further development and improvement. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1338 KW - OpenForecast KW - open KW - operational service KW - runoff KW - forecasting KW - Russia Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473295 SN - 1866-8372 IS - 1338 ER - TY - JOUR A1 - Ayzel, Georgy A1 - Varentsova, Natalia A1 - Erina, Oxana A1 - Sokolov, Dmitriy A1 - Kurochkina, Liubov A1 - Moreydo, Vsevolod T1 - OpenForecast BT - The First Open-Source Operational Runoff Forecasting System in Russia JF - Water : Molecular Diversity Preservation International N2 - The development and deployment of new operational runoff forecasting systems are a strong focus of the scientific community due to the crucial importance of reliable and timely runoff predictions for early warnings of floods and flashfloods for local businesses and communities. OpenForecast, the first operational runoff forecasting system in Russia, open for public use, is presented in this study. We developed OpenForecast based only on open-source software and data-GR4J hydrological model, ERA-Interim meteorological reanalysis, and ICON deterministic short-range meteorological forecasts. Daily forecasts were generated for two basins in the European part of Russia. Simulation results showed a limited efficiency in reproducing the spring flood of 2019. Although the simulations managed to capture the timing of flood peaks, they failed in estimating flood volume. However, further implementation of the parsimonious data assimilation technique significantly alleviates simulation errors. The revealed limitations of the proposed operational runoff forecasting system provided a foundation to outline its further development and improvement. KW - OpenForecast KW - open KW - operational service KW - runoff KW - forecasting KW - Russia Y1 - 2019 U6 - https://doi.org/10.3390/w11081546 SN - 2073-4441 VL - 11 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Aldiyarov, Abdurakhman A1 - Sokolov, Dmitriy A1 - Akylbayeva, Aigerim A1 - Nurmukan, Assel A1 - Tokmoldin, Nurlan T1 - On thermal stability of cryovacuum deposited CH4+H2O films JF - Low temperature physics N2 - Whereas stable homogenous states of aqueous hydrocarbon solutions are typically observed at high temperatures and pressures far beyond the critical values corresponding to individual components, the stability of such system may be preserved upon transition into the region of metastable states at low temperatures and low pressures. This work is dedicated to the study of the thermal stability of a water-methane mixture formed by cryogenic vapor phase deposition. The obtained thin films were studied using vibrational spectroscopy in the temperature range of 16-180 K. During thermal annealing of the samples, characteristic vibrational C-H modes of methane were monitored alongside the chamber pressure to register both structural changes and desorption of the film material. The obtained results reveal that upon the co-deposition of methane and water, methane molecules appear both in non-bound and trapped states. The observed broadening of the characteristic C-H stretching mode at 3010 cm(-1) upon an increase in temperature of the sample from 16 to 90 K, followed by narrowing of the peak as the temperature is reduced back to 16 K, indicates localization of methane molecules within the water matrix at lower temperatures. KW - molecular crystals KW - water-methane films KW - vibrational spectroscopy KW - low KW - temperature KW - methane localization Y1 - 2020 U6 - https://doi.org/10.1063/10.0002156 SN - 1063-777X SN - 1090-6517 VL - 46 IS - 11 SP - 1121 EP - 1124 PB - American Institute of Physics CY - Melville ER -