TY - JOUR A1 - Comparot-Moss, Sylviane A1 - Koetting, Oliver A1 - Stettler, Michaela A1 - Edner, Christoph A1 - Graf, Alexander A1 - Weise, Sean E. A1 - Streb, Sebastian A1 - Lue, Wei-Ling A1 - MacLean, Daniel A1 - Mahlow, Sebastian A1 - Ritte, Gerhard A1 - Steup, Martin A1 - Chen, Jychian A1 - Zeeman, Samuel C. A1 - Smith, Alison M. T1 - A putative phosphatase, LSF1, is required for normal starch turnover in Arabidopsis leaves N2 - A putative phosphatase, LSF1 (for LIKE SEX4; previously PTPKIS2), is closely related in sequence and structure to STARCH-EXCESS4 (SEX4), an enzyme necessary for the removal of phosphate groups from starch polymers during starch degradation in Arabidopsis (Arabidopsis thaliana) leaves at night. We show that LSF1 is also required for starch degradation: lsf1 mutants, like sex4 mutants, have substantially more starch in their leaves than wild-type plants throughout the diurnal cycle. LSF1 is chloroplastic and is located on the surface of starch granules. lsf1 and sex4 mutants show similar, extensive changes relative to wild-type plants in the expression of sugar-sensitive genes. However, although LSF1 and SEX4 are probably both involved in the early stages of starch degradation, we show that LSF1 neither catalyzes the same reaction as SEX4 nor mediates a sequential step in the pathway. Evidence includes the contents and metabolism of phosphorylated glucans in the single mutants. The sex4 mutant accumulates soluble phospho- oligosaccharides undetectable in wild-type plants and is deficient in a starch granule-dephosphorylating activity present in wild-type plants. The lsf1 mutant displays neither of these phenotypes. The phenotype of the lsf1/sex4 double mutant also differs from that of both single mutants in several respects. We discuss the possible role of the LSF1 protein in starch degradation. Y1 - 2010 UR - http://www.plantphysiol.org/ U6 - https://doi.org/10.1104/pp.109.148981 SN - 0032-0889 ER - TY - JOUR A1 - Bartholomäus, Alexander A1 - Lipus, Daniel A1 - Mitzscherling, Julia A1 - MacLean, Joana A1 - Wagner, Dirk T1 - Draft Genome Sequence of Nocardioides alcanivorans NGK65(T), a Hexadecane-Degrading Bacterium JF - Microbiology Resource Announcements N2 - The Gram-positive bacterium Nocardioides alcanivorans NGK65(T) was isolated from plastic-polluted soil and cultivated on medium with polyethylene as the single carbon source. Nanopore sequencing revealed the presence of candidate enzymes for the biodegradation of polyethylene. Here, we report the draft genome of this newly described member of the terrestrial plastisphere. Y1 - 2022 U6 - https://doi.org/10.1128/mra.01213-21 SN - 2576-098X VL - 11 IS - 8 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Mitzscherling, Julia A1 - MacLean, Joana A1 - Lipus, Daniel A1 - Bartholomäus, Alexander A1 - Mangelsdorf, Kai A1 - Lipski, André A1 - Roddatis, Vladimir A1 - Liebner, Susanne A1 - Wagner, Dirk T1 - Nocardioides alcanivorans sp. nov., a novel hexadecane-degrading species isolated from plastic waste JF - International journal of systematic and evolutionary microbiology N2 - Strain NGK65(T), a novel hexadecane degrading, non-motile, Gram-positive, rod-to-coccus shaped, aerobic bacterium, was isolated from plastic polluted soil sampled at a landfill. Strain NGK65(T) hydrolysed casein, gelatin, urea and was catalase-positive. It optimally grew at 28 degrees C. in 0-1% NaCl and at pH 7.5-8.0. Glycerol, D-glucose, arbutin, aesculin, salicin, potassium 5-ketogluconate. sucrose, acetate, pyruvate and hexadecane were used as sole carbon sources. The predominant membrane fatty acids were iso-C-16:0 followed by iso-C(17:)0 and C-18:1 omega 9c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and hydroxyphosphatidylinositol. The cell-wall peptidoglycan type was A3 gamma, with LL-diaminopimelic acid and glycine as the diagnostic amino acids. MK 8 (H-4) was the predominant menaquinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK65(T) belongs to the genus Nocardioides (phylum Actinobacteria). appearing most closely related to Nocardioides daejeonensis MJ31(T) (98.6%) and Nocardioides dubius KSL-104(T) (98.3%). The genomic DNA G+C content of strain NGK65(T) was 68.2%. Strain NGK65(T) and the type strains of species involved in the analysis had average nucleotide identity values of 78.3-71.9% as well as digital DNA-DNA hybridization values between 22.5 and 19.7%, which clearly indicated that the isolate represents a novel species within the genus Nocardioides. Based on phenotypic and molecular characterization, strain NGK65(T) can clearly be differentiated from its phylogenetic neighbours to establish a novel species, for which the name Nocardioides alcanivorans sp. nov. is proposed. The type strain is NGK65(T) (=DSM 113112(T)=NCCB 100846(T)). KW - Nocardioides alcanivorans KW - hexadecane KW - plastic degradation KW - terrestrial KW - plastisphere KW - bacteria Y1 - 2022 U6 - https://doi.org/10.1099/ijsem.0.005319 SN - 1466-5026 SN - 1466-5034 VL - 72 IS - 4 PB - Microbiology Society CY - London ER -