TY - JOUR A1 - Bordag, Natalie A1 - Klie, Sebastian A1 - Jürchott, Kathrin A1 - Vierheller, Janine A1 - Schiewe, Hajo A1 - Albrecht, Valerie A1 - Tonn, Jörg-Christian A1 - Schwartz, Christoph A1 - Schichor, Christian A1 - Selbig, Joachim T1 - Glucocorticoid (dexamethasone)-induced metabolome changes in healthy males suggest prediction of response and side effects JF - Scientific reports N2 - Glucocorticoids are indispensable anti-inflammatory and decongestant drugs with high prevalence of use at (similar to)0.9% of the adult population. Better holistic insights into glucocorticoid-induced changes are crucial for effective use as concurrent medication and management of adverse effects. The profiles of 214 metabolites from plasma of 20 male healthy volunteers were recorded prior to and after ingestion of a single dose of 4 mg dexamethasone (+20 mg pantoprazole). Samples were drawn at three predefined time points per day: seven untreated (day 1 midday - day 3 midday) and four treated (day 3 evening - day 4 evening) per volunteer. Statistical analysis revealed tremendous impact of dexamethasone on the metabolome with 150 of 214 metabolites being significantly deregulated on at least one time point after treatment (ANOVA, Benjamini-Hochberg corrected, q < 0.05). Inter-person variability was high and remained uninfluenced by treatment. The clearly visible circadian rhythm prior to treatment was almost completely suppressed and deregulated by dexamethasone. The results draw a holistic picture of the severe metabolic deregulation induced by single-dose, short-term glucocorticoid application. The observed metabolic changes suggest a potential for early detection of severe side effects, raising hope for personalized early countermeasures increasing quality of life and reducing health care costs. Y1 - 2015 U6 - https://doi.org/10.1038/srep15954 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Balthasar, H. A1 - Gömöry, P. A1 - González Manrique, Sergio Javier A1 - Kuckein, Christoph A1 - Kavka, J. A1 - Kucera, A. A1 - Schwartz, P. A1 - Vaskova, R. A1 - Berkefeld, T. A1 - Collados Vera, M. A1 - Denker, Carsten A1 - Feller, A. A1 - Hofmann, A. A1 - Lagg, A. A1 - Nicklas, H. A1 - Suarez, D. A1 - Pastor Yabar, A. A1 - Rezaei, R. A1 - Schlichenmaier, R. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Sigwarth, M. A1 - Sobotka, M. A1 - Solanki, S. K. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Volkmer, R. A1 - von der Lühe, O. A1 - Waldmann, T. T1 - Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope JF - Astronomische Nachrichten = Astronomical notes N2 - Arch filament systems occur in active sunspot groups, where a fibril structure connects areas of opposite magnetic polarity, in contrast to active region filaments that follow the polarity inversion line. We used the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral lines SiI lambda 1082.7 nm, He I lambda 1083.0 nm, and Ca I lambda 1083.9 nm. We focus on the near-infrared calcium line to investigate the photospheric magnetic field and velocities, and use the line core intensities and velocities of the helium line to study the chromospheric plasma. The individual fibrils of the arch filament system connect the sunspot with patches of magnetic polarity opposite to that of the spot. These patches do not necessarily coincide with pores, where the magnetic field is strongest. Instead, areas are preferred not far from the polarity inversion line. These areas exhibit photospheric downflows of moderate velocity, but significantly higher downflows of up to 30 km s(-1) in the chromospheric helium line. Our findings can be explained with new emerging flux where the matter flows downward along the field lines of rising flux tubes, in agreement with earlier results. (C) 2016 WILEY-VCH Verlag GmbH& Co. KGaA, Weinheim KW - Sun: filaments KW - Sun: photosphere KW - techniques: polarimetric KW - techniques: spectroscopic Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612432 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1050 EP - 1056 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Gömöry, Peter A1 - Balthasar, Horst A1 - Kuckein, Christoph A1 - Koza, Julis A1 - Veronig, Astrid M. A1 - González Manrique, Sergio Javier A1 - Kucera, Ales A1 - Schwartz, Pavol A1 - Hanslmeier, Arnold T1 - Flare-induced changes of the photospheric magnetic field in a delta-spot deduced from ground-based observations JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. Changes of the magnetic field and the line-of-sight velocities in the photosphere are being reported for an M-class flare that originated at a delta-spot belonging to active region NOAA 11865. Methods. High-resolution ground-based near-infrared spectropolarimetric observations were acquired simultaneously in two photospheric spectral lines, Fe I 10783 angstrom and Si I 10786 angstrom, with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (VTT) in Tenerife on 2013 October 15. The observations covered several stages of the M-class flare. Inversions of the full-Stokes vector of both lines were carried out and the results were put into context using (extreme)-ultraviolet filtergrams from the Solar Dynamics Observatory (SDO). Results. The active region showed high flaring activity during the whole observing period. After the M-class flare, the longitudinal magnetic field did not show significant changes along the polarity inversion line (PIL). However, an enhancement of the transverse magnetic field of approximately 550G was found that bridges the PIL and connects umbrae of opposite polarities in the delta-spot. At the same time, a newly formed system of loops appeared co-spatially in the corona as seen in 171 angstrom filtergrams of the Atmospheric Imaging Assembly (AIA) on board SDO. However, we cannot exclude that the magnetic connection between the umbrae already existed in the upper atmosphere before the M-class flare and became visible only later when it was filled with hot plasma. The photospheric Doppler velocities show a persistent upflow pattern along the PIL without significant changes due to the flare. Conclusions. The increase of the transverse component of the magnetic field after the flare together with the newly formed loop system in the corona support recent predictions of flare models and flare observations. KW - Sun: magnetic fields KW - sunspots KW - Sun: photosphere KW - Sun: flares KW - techniques: polarimetric Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730644 SN - 1432-0746 VL - 602 SP - 14 EP - 27 PB - EDP Sciences CY - Les Ulis ER -