TY - GEN A1 - Roethlein, Christoph A1 - Miettinen, Markus S. A1 - Ignatova, Zoya T1 - A flexible approach to assess fluorescence decay functions in complex energy transfer systems T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe 819 N2 - Background: Time-correlated Forster resonance energy transfer (FRET) probes molecular distances with greater accuracy than intensity-based calculation of FRET efficiency and provides a powerful tool to study biomolecular structure and dynamics. Moreover, time-correlated photon count measurements bear additional information on the variety of donor surroundings allowing more detailed differentiation between distinct structural geometries which are typically inaccessible to general fitting solutions. Results: Here we develop a new approach based on Monte Carlo simulations of time-correlated FRET events to estimate the time-correlated single photon counts (TCSPC) histograms in complex systems. This simulation solution assesses the full statistics of time-correlated photon counts and distance distributions of fluorescently labeled biomolecules. The simulations are consistent with the theoretical predictions of the dye behavior in FRET systems with defined dye distances and measurements of randomly distributed dye solutions. We validate the simulation results using a highly heterogeneous aggregation system and explore the conditions to use this tool in complex systems. Conclusion: This approach is powerful in distinguishing distance distributions in a wide variety of experimental setups, thus providing a versatile tool to accurately distinguish between different structural assemblies in highly complex systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 819 KW - time resolved FRET KW - Monte-Carlo simulations KW - complex heterogeneous systems KW - protein aggregation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427557 SN - 1866-8372 IS - 819 ER - TY - JOUR A1 - Roethlein, Christoph A1 - Miettinen, Markus S. A1 - Borwankar, Tejas A1 - Buerger, Joerg A1 - Mielke, Thorsten A1 - Kumke, Michael Uwe A1 - Ignatova, Zoya T1 - Architecture of polyglutamine-containing fibrils from time-resolved fluorescence decay JF - The journal of biological chemistry N2 - The disease risk and age of onset of Huntington disease (HD) and nine other repeat disorders strongly depend on the expansion of CAG repeats encoding consecutive polyglutamines (polyQ) in the corresponding disease protein. PolyQ length-dependent misfolding and aggregation are the hallmarks of CAG pathologies. Despite intense effort, the overall structure of these aggregates remains poorly understood. Here, we used sensitive time-dependent fluorescent decay measurements to assess the architecture of mature fibrils of huntingtin (Htt) exon 1 implicated in HD pathology. Varying the position of the fluorescent labels in the Htt monomer with expanded 51Q (Htt51Q) and using structural models of putative fibril structures, we generated distance distributions between donors and acceptors covering all possible distances between the monomers or monomer dimensions within the polyQ amyloid fibril. Using Monte Carlo simulations, we systematically scanned all possible monomer conformations that fit the experimentally measured decay times. Monomers with four-stranded 51Q stretches organized into five-layered beta-sheets with alternating N termini of the monomers perpendicular to the fibril axis gave the best fit to our data. Alternatively, the core structure of the polyQ fibrils might also be a zipper layer with antiparallel four-stranded stretches as this structure showed the next best fit. All other remaining arrangements are clearly excluded by the data. Furthermore, the assessed dimensions of the polyQ stretch of each monomer provide structural evidence for the observed polyQ length threshold in HD pathology. Our approach can be used to validate the effect of pharmacological substances that inhibit or alter amyloid growth and structure. Y1 - 2014 U6 - https://doi.org/10.1074/jbc.M114.581991 SN - 0021-9258 SN - 1083-351X VL - 289 IS - 39 SP - 26817 EP - 26828 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Borwankar, Tejas A1 - Roethlein, Christoph A1 - Zhang, Gong A1 - Techen, Anne A1 - Dosche, Carsten A1 - Ignatova, Zoya T1 - Natural osmolytes remodel the aggregation pathway of mutant huntingtin exon 1 JF - Biochemistry N2 - In response to stress small organic compounds termed osmolytes are ubiquitously accumulated in all cell types to regulate the intracellular solvent quality and to counteract the deleterious effect on the stability and function of cellular proteins. Given the evidence that destabilization of the native state of a protein either by mutation or by environmental changes triggers the aggregation in the neurodegenerative pathologies, the modulation of the intracellular solute composition with osmolytes is an attractive strategy to stabilize an aggregating protein. Here we report the effect of three natural osmolytes on the in vivo and in vitro aggregation landscape of huntingtin exon 1 implicated in the Huntington's disease. Trimethylamine N-oxide (TMAO) and proline redirect amyloid fibrillogenesis of the pathological huntingtin exon 1 to nonamyloidogenic amorphous assemblies via two dissimilar molecular mechanisms. TMAO causes a rapid formation of bulky amorphous aggregates with minimally exposed surface area, whereas proline solubilizes the monomer and suppresses the accumulation of early transient aggregates. Conversely, glycine betaine enhances fibrillization in a fashion reminiscent of the genesis of functional amyloids. Strikingly, none of the natural osmolytes can completely abrogate the aggregate formation; however, they redirect the amyloidogenesis into alternative, nontoxic aggregate species. Our study reveals new insights into the complex interactions of osmoprotectants with polyQaggregates. Y1 - 2011 U6 - https://doi.org/10.1021/bi1018368 SN - 0006-2960 VL - 50 IS - 12 SP - 2048 EP - 2060 PB - American Chemical Society CY - Washington ER -