TY - JOUR A1 - Friedl, Christian A1 - Renger, Thomas A1 - Berlepsch, Hans V. A1 - Ludwig, Kai A1 - Schmidt am Busch, Marcel A1 - Megow, Jörg T1 - Structure Prediction of Self-Assembled Dye Aggregates from Cryogenic Transmission Electron Microscopy, Molecular Mechanics, and Theory of Optical Spectra JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Cryogenic transmission electron microscopy (cryo-TEM) studies suggest that TTBC molecules self-assemble in aqueous solution to form single-walled tubes with a diameter of about 35 A. In order to reveal the arrangement and mutual orientations of the individual molecules in the tube, we combine information from crystal structure data of this dye with a calculation of linear absorbance and linear dichroism spectra and molecular dynamics simulations. We start with wrapping crystal planes in different directions to obtain tubes of suitable diameter. This set of tube models is evaluated by comparing the resulting optical spectra with experimental data. The tubes that can explain the spectra are investigated further by molecular dynamics simulations, including explicit solvent molecules. From the trajectories of the most stable tube models, the short-range ordering of the dye molecules is extracted and the optimization of the structure is iteratively completed. The final structural model is a tube of rings with 6-fold rotational symmetry, where neighboring rings are rotated by 30 and the-transition dipole moments of the chromophores form an angle of 74 with respect to the symmetry axis of the tube. This model is in agreement with cryo-TEM images and can explain the optical spectra, consisting of a sharp red-shifted J-band that is polarized parallel to to the symmetry axis of the tube and a broad blue-shifted H-band polarized perpendicular to this axis. The general structure of the homogeneous spectrum of this hybrid HJ-aggregate is described by an analytical model that explains the difference in redistribution of oscillator strength inside the vibrational manifolds of the J- and H-bands and the relative intensities and excitation energies of those bands. In addition to the-particular system investigated here, the present methodology can be expected to aid the structure prediction for a wide range of self-assembled dye aggregates. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.6b05856 SN - 1932-7447 VL - 120 SP - 19416 EP - 19433 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Musolff, Andreas A1 - Schmidt, Christian A1 - Rode, Michael A1 - Lischeid, Gunnar A1 - Weise, Stephan M. A1 - Fleckenstein, Jan H. T1 - Groundwater head controls nitrate export from an agricultural lowland catchment JF - Advances in water resources N2 - Solute concentration variability is of fundamental importance for the chemical and ecological state of streams. It is often closely related to discharge variability and can be characterized in terms of a solute export regime. Previous studies, especially in lowland catchments, report that nitrate is often exported with an accretion pattern of increasing concentrations with increasing discharge. Several modeling approaches exist to predict the export regime of solutes from the spatial relationship of discharge generating zones with solute availability in the catchment. For a small agriculturally managed lowland catchment in central Germany, we show that this relationship is controlled by the depth to groundwater table and its temporal dynamics. Principal component analysis of groundwater level time series from wells distributed throughout the catchment allowed derivation of a representative groundwater level time series that explained most of the discharge variability. Groundwater sampling revealed consistently decreasing nitrate concentrations with an increasing thickness of the unsaturated zone. The relationships of depth to groundwater table to discharge and to nitrate concentration were parameterized and integrated to successfully model catchment discharge and nitrate export on the basis of groundwater level variations alone. This study shows that intensive and uniform agricultural land use likely results in a clear and consistent concentration-depth relationship of nitrate, which can be utilized in simple approaches to predict stream nitrate export dynamics at the catchment scale. (C) 2016 Elsevier Ltd. All rights reserved. KW - Water quality KW - Nitrate KW - Lowland catchment KW - Export regime KW - Concentration-discharge relationship Y1 - 2016 U6 - https://doi.org/10.1016/j.advwatres.2016.07.003 SN - 0309-1708 SN - 1872-9657 VL - 96 SP - 95 EP - 107 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Munz, Matthias A1 - Oswald, Sascha Eric A1 - Schmidt, Christian T1 - Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures JF - Journal of hydrology N2 - The analytical evaluation of diurnal temperature variation in riverbed sediments provides detailed information on exchange fluxes between rivers and groundwater. The underlying assumption of the stationary, one-dimensional vertical flow field is frequently violated in natural systems where subsurface water flow often has a significant horizontal component. In this paper, we present a new methodology for identifying the geometry of the subsurface flow field using vertical temperature profiles. The statistical analyses are based on model optimisation and selection and are used to evaluate the shape of vertical amplitude ratio profiles. The method was applied to multiple profiles measured around in-stream geomorphological structures in a losing reach of a gravel bed river. The predominant subsurface flow field was systematically categorised in purely vertical and horizontal (hyporheic, parafluvial) components. The results highlight that river groundwater exchange flux at the head, crest and tail of geomorphological structures significantly deviated from the one-dimensional vertical flow, due to a significant horizontal component. The geometry of the subsurface water flow depended on the position around the geomorphological structures and on the river level. The methodology presented in this paper features great potential for characterising the spatial patterns and temporal dynamics of complex subsurface flow geometries by using measured temperature time series in vertical profiles. (C) 2016 Elsevier B.V. All rights reserved. KW - Temperature time series KW - Amplitude ratio KW - River-groundwater exchange KW - Hyporheic zone KW - In-stream geomorphological structures KW - River restoration Y1 - 2016 U6 - https://doi.org/10.1016/j.jhydrol.2016.05.012 SN - 0022-1694 SN - 1879-2707 VL - 539 SP - 74 EP - 87 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tötzke, Christian A1 - Gaiselmann, G. A1 - Osenberg, M. A1 - Arlt, T. A1 - Markötter, H. A1 - Hilger, A. A1 - Kupsch, Andreas A1 - Müller, B. R. A1 - Schmidt, V. A1 - Lehnert, W. A1 - Manke, Ingo T1 - Influence of hydrophobic treatment on the structure of compressed gas diffusion layers JF - Journal of power sources : the international journal on the science and technology of electrochemical energy systems N2 - Carbon fiber based felt materials are widely used as gas diffusion layer (GDL) in fuel cells. Their transport properties can be adjusted by adding hydrophobic agents such as polytetrafluoroethylene (PTFE). We present a synchrotron X-ray tomographic study on the felt material Freudenberg H2315 with different PIPE finishing. In this study, we analyze changes in microstructure and shape of GDLs at increasing degree of compression which are related to their specific PTFE load. A dedicated compression device mimicking the channel-land pattern of the flowfield is used to reproduce the inhomogeneous compression found in a fuel cell. Transport relevant geometrical parameters such as porosity, pore size distribution and geometric tortuosity are calculated and consequences for media transport discussed. PTFE finishing results in a marked change of shape of compressed GDLs: surface is smoothed and the invasion of GDL fibers into the flow field channel strongly mitigated. Furthermore, the PTFE impacts the microstructure of the compressed GDL. The number of available wide transport paths is significantly increased as compared to the untreated material. These changes improve the transport capacity liquid water through the GDL and promote the discharge of liquid water droplets from the cell. (C) 2016 Elsevier B.V. All rights reserved. KW - Gas diffusion layer KW - Synchrotron tomography KW - Compression KW - Hydrophobic treatment KW - Water transport Y1 - 2016 U6 - https://doi.org/10.1016/j.jpowsour.2016.05.118 SN - 0378-7753 SN - 1873-2755 VL - 324 SP - 625 EP - 636 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schmidt, Carsten A1 - Roediger, Stefan A1 - Gruner, Melanie A1 - Moncsek, Anja A1 - Stohwasser, Ralf A1 - Hanack, Katja A1 - Schierack, Peter A1 - Schroeder, Christian T1 - Multiplex localization of sequential peptide epitopes by use of a planar microbead chip JF - Analytica chimica acta : an international journal devoted to all branches of analytical chemistry N2 - Epitope mapping is crucial for the characterization of protein-specific antibodies. Commonly, small overlapping peptides are chemically synthesized and immobilized to determine the specific peptide sequence. In this study, we report the use of a fast and inexpensive planar microbead chip for epitope mapping. We developed a generic strategy for expressing recombinant peptide libraries instead of using expensive synthetic peptide libraries. A biotin moiety was introduced in vivo at a defined peptide position using biotin ligase. Peptides in crude Escherichia coli lysate were coupled onto streptavidin-coated microbeads by incubation, thereby avoiding tedious purification procedures. For read-out we used a multiplex planar microbead chip with size- and fluorescence-encoded microbead populations. For epitope mapping, up to 18 populations of peptide-loaded microbeads (at least 20 microbeads per peptide) displaying the primary sequence of a protein were analyzed simultaneously. If an epitope was recognized by an antibody, a secondary fluorescence-labeled antibody generated a signal that was quantified, and the mean value of all microbeads in the population was calculated. We mapped the epitopes for rabbit anti-PA28 gamma (proteasome activator 28 gamma) polyclonal serum, for a murine monoclonal antibody against PA28 gamma, and for a murine monoclonal antibody against the hamster polyoma virus major capsid protein VP1 as models. In each case, the identification of one distinct peptide sequence out of up to 18 sequences was possible. Using this approach, an epitope can be mapped multiparametrically within three weeks. (C) 2016 Elsevier B.V. All rights reserved. KW - Epitope mapping KW - In vivo biotinylation KW - Multiplexed assays KW - Microbeads KW - VideoScan technology Y1 - 2016 U6 - https://doi.org/10.1016/j.aca.2015.12.030 SN - 0003-2670 SN - 1873-4324 VL - 908 SP - 150 EP - 160 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Grüneberger, Anja Maria A1 - Schmidt, Christian A1 - Jahn, Sandro A1 - Rhede, Dieter A1 - Loges, Anselm A1 - Wilke, Max T1 - Interpretation of Raman spectra of the zircon-hafnon solid solution JF - European journal of mineralogy N2 - Zircon (ZrSiO4), hafnon (HfSiO4) and five intermediate compositions were synthesized from a Pb silicate melt. The resulting crystals were 20-300 mu m in size and displayed sector and growth zoning. Raman spectra were acquired at locations in the sample for which preceding electron microprobe (EMP) analyses revealed sufficient compositional homogeneity. The dataset documents shifts of Raman bands with changing composition. In this study, bands that have previously not been reported were found for the intermediate compositions and for pure hafnon, in particular at wavenumbers less than 200 cm(-1). For these external modes, the dataset provides new insight into the compositional dependence of their frequencies. Density-functional theory calculations support the observations and are used for a detailed interpretation of the spectra. The pitfalls of the EMP analysis along the zircon-hafnon join are highlighted. KW - zircon KW - hafnon KW - solid solution KW - Raman spectroscopy KW - synthesis KW - density-functional theory KW - hafnium analysis Y1 - 2016 U6 - https://doi.org/10.1127/ejm/2016/0028-2551 SN - 0935-1221 SN - 1617-4011 VL - 28 SP - 721 EP - 733 PB - Schweizerbart CY - Stuttgart ER -