TY - JOUR A1 - Hetenyi, Gyorgy A1 - Molinari, Irene A1 - Clinton, John A1 - Bokelmann, Gotz A1 - Bondar, Istvan A1 - Crawford, Wayne C. A1 - Dessa, Jean-Xavier A1 - Doubre, Cecile A1 - Friederich, Wolfgang A1 - Fuchs, Florian A1 - Giardini, Domenico A1 - Graczer, Zoltan A1 - Handy, Mark R. A1 - Herak, Marijan A1 - Jia, Yan A1 - Kissling, Edi A1 - Kopp, Heidrun A1 - Korn, Michael A1 - Margheriti, Lucia A1 - Meier, Thomas A1 - Mucciarelli, Marco A1 - Paul, Anne A1 - Pesaresi, Damiano A1 - Piromallo, Claudia A1 - Plenefisch, Thomas A1 - Plomerova, Jaroslava A1 - Ritter, Joachim A1 - Rumpker, Georg A1 - Sipka, Vesna A1 - Spallarossa, Daniele A1 - Thomas, Christine A1 - Tilmann, Frederik A1 - Wassermann, Joachim A1 - Weber, Michael A1 - Weber, Zoltan A1 - Wesztergom, Viktor A1 - Zivcic, Mladen A1 - Abreu, Rafael A1 - Allegretti, Ivo A1 - Apoloner, Maria-Theresia A1 - Aubert, Coralie A1 - Besancon, Simon A1 - de Berc, Maxime Bes A1 - Brunel, Didier A1 - Capello, Marco A1 - Carman, Martina A1 - Cavaliere, Adriano A1 - Cheze, Jerome A1 - Chiarabba, Claudio A1 - Cougoulat, Glenn A1 - Cristiano, Luigia A1 - Czifra, Tibor A1 - Danesi, Stefania A1 - Daniel, Romuald A1 - Dannowski, Anke A1 - Dasovic, Iva A1 - Deschamps, Anne A1 - Egdorf, Sven A1 - Fiket, Tomislav A1 - Fischer, Kasper A1 - Funke, Sigward A1 - Govoni, Aladino A1 - Groschl, Gidera A1 - Heimers, Stefan A1 - Heit, Ben A1 - Herak, Davorka A1 - Huber, Johann A1 - Jaric, Dejan A1 - Jedlicka, Petr A1 - Jund, Helene A1 - Klingen, Stefan A1 - Klotz, Bernhard A1 - Kolinsky, Petr A1 - Kotek, Josef A1 - Kuhne, Lothar A1 - Kuk, Kreso A1 - Lange, Dietrich A1 - Loos, Jurgen A1 - Lovati, Sara A1 - Malengros, Deny A1 - Maron, Christophe A1 - Martin, Xavier A1 - Massa, Marco A1 - Mazzarini, Francesco A1 - Metral, Laurent A1 - Moretti, Milena A1 - Munzarova, Helena A1 - Nardi, Anna A1 - Pahor, Jurij A1 - Pequegnat, Catherine A1 - Petersen, Florian A1 - Piccinini, Davide A1 - Pondrelli, Silvia A1 - Prevolnik, Snjezan A1 - Racine, Roman A1 - Regnier, Marc A1 - Reiss, Miriam A1 - Salimbeni, Simone A1 - Santulin, Marco A1 - Scherer, Werner A1 - Schippkus, Sven A1 - Schulte-Kortnack, Detlef A1 - Solarino, Stefano A1 - Spieker, Kathrin A1 - Stipcevic, Josip A1 - Strollo, Angelo A1 - Sule, Balint A1 - Szanyi, Gyongyver A1 - Szucs, Eszter A1 - Thorwart, Martin A1 - Ueding, Stefan A1 - Vallocchia, Massimiliano A1 - Vecsey, Ludek A1 - Voigt, Rene A1 - Weidle, Christian A1 - Weyland, Gauthier A1 - Wiemer, Stefan A1 - Wolf, Felix A1 - Wolyniec, David A1 - Zieke, Thomas T1 - The AlpArray seismic network BT - a large-scale european experiment to image the alpine orogen JF - Surveys in Geophysics N2 - The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth. KW - Seismology KW - Alps KW - Seismic network KW - Geodynamics KW - Seismic imaging KW - Mountain building Y1 - 2018 U6 - https://doi.org/10.1007/s10712-018-9472-4 SN - 0169-3298 SN - 1573-0956 VL - 39 IS - 5 SP - 1009 EP - 1033 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Huber, Robert A1 - Rigling, Andreas A1 - Bebi, Peter A1 - Brand, Fridolin Simon A1 - Briner, Simon A1 - Buttler, Alexandre A1 - Elkin, Che A1 - Gillet, Francois A1 - Gret-Regamey, Adrienne A1 - Hirschi, Christian A1 - Lischke, Heike A1 - Scholz, Roland Werner A1 - Seidl, Roman A1 - Spiegelberger, Thomas A1 - Walz, Ariane A1 - Zimmermann, Willi A1 - Bugmann, Harald T1 - Sustainable land use in Mountain Regions under global change synthesis across scales and disciplines JF - Ecology and society : a journal of integrative science for resilience and sustainability N2 - Mountain regions provide essential ecosystem goods and services (EGS) for both mountain dwellers and people living outside these areas. Global change endangers the capacity of mountain ecosystems to provide key services. The Mountland project focused on three case study regions in the Swiss Alps and aimed to propose land-use practices and alternative policy solutions to ensure the provision of key EGS under climate and land-use changes. We summarized and synthesized the results of the project and provide insights into the ecological, socioeconomic, and political processes relevant for analyzing global change impacts on a European mountain region. In Mountland, an integrative approach was applied, combining methods from economics and the political and natural sciences to analyze ecosystem functioning from a holistic human-environment system perspective. In general, surveys, experiments, and model results revealed that climate and socioeconomic changes are likely to increase the vulnerability of the EGS analyzed. We regard the following key characteristics of coupled human-environment systems as central to our case study areas in mountain regions: thresholds, heterogeneity, trade-offs, and feedback. Our results suggest that the institutional framework should be strengthened in a way that better addresses these characteristics, allowing for (1) more integrative approaches, (2) a more network-oriented management and steering of political processes that integrate local stakeholders, and (3) enhanced capacity building to decrease the identified vulnerability as central elements in the policy process. Further, to maintain and support the future provision of EGS in mountain regions, policy making should also focus on project-oriented, cross-sectoral policies and spatial planning as a coordination instrument for land use in general. KW - adaptive management KW - climate change KW - ecosystem services KW - experiments KW - interdisciplinary research KW - land-use change KW - modeling KW - transdisciplinary research Y1 - 2013 U6 - https://doi.org/10.5751/ES-05499-180336 SN - 1708-3087 VL - 18 IS - 3 PB - Resilience Alliance CY - Wolfville ER - TY - THES A1 - Huber, Christian T1 - Explizit zeitabhängige Configuration-Interaction-Singles und Coupled-Cluster-Singles-Doubles Rechnungen zur laserinduzierten Vielelektronendynamik Y1 - 2010 CY - Potsdam ER - TY - JOUR A1 - Huber, Christian A1 - Klamroth, Tillmann T1 - Explicitly time-dependent coupled cluster singles doubles calculations of laser-driven many-electron dynamics JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We report explicitly time-dependent coupled cluster singles doubles (TD-CCSD) calculations, which simulate the laser-driven correlated many-electron dynamics in molecular systems. Small molecules, i.e., HF, H(2)O, NH(3), and CH(4), are treated mostly with polarized valence double zeta basis sets. We determine the coupled cluster ground states by imaginary time propagation for these molecules. Excited state energies are obtained from the Fourier transform of the time-dependent dipole moment after an ultrashort, broadband laser excitation. The time-dependent expectation values are calculated from the complex cluster amplitudes using the corresponding configuration interaction singles doubles wave functions. Also resonant laser excitations of these excited states are simulated, in order to explore the limits for the numerical stability of our current TD-CCSD implementation, which uses time-independent molecular orbitals to form excited configurations. Y1 - 2011 U6 - https://doi.org/10.1063/1.3530807 SN - 0021-9606 VL - 134 IS - 5 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Schwab, Susanne A1 - Huber, Christian A1 - Gebhardt, Markus T1 - Social acceptance of students with Down syndrome and students without disability JF - Educational psychology N2 - We investigated the influence of teacher feedback on the social acceptance of peers with intellectual disabilities and peers without disabilities. A computer task was administered to 601 students in grades 3 and 4. Twenty-six per cent of the students attend an inclusive school; the others are in regular schools without students with special educational needs. Participants are introduced to ‘new’ virtual classmates, one student with Down syndrome (DS), and one control student with no obvious disability. Additionally, teacher feedback and feedback about fun playing with the new classmates is given. Social acceptance is evaluated by asking if one would like to sit next to him/her. Both feedbacks showed a strong effect. The child with DS was less socially accepted than the child without disability. No difference regarding the social acceptance of the students with DS was found between students from inclusive and regular classes. Students from regular classes rate the social acceptance of the student without disabilities significantly higher than students from inclusive classrooms. KW - inclusion and exclusion KW - disability KW - social acceptance Y1 - 2016 U6 - https://doi.org/10.1080/01443410.2015.1059924 SN - 0144-3410 SN - 1469-5820 VL - 36 SP - 1501 EP - 1515 PB - Hindawi Publishing Corp. CY - Abingdon ER - TY - JOUR A1 - Huber, Christian A1 - Gebhardt, Markus A1 - Schwab, Susanne T1 - Teacher feedback or fun playing games? An experimental study investigating the influence of teacher feedback on social acceptance in primary school JF - Psychologie in Erziehung und Unterricht : Zeitschrift für Forschung und Praxis KW - Inclusion KW - mainstreaming KW - social participation KW - social referencing KW - experiment Y1 - 2015 U6 - https://doi.org/10.2378/peu2015.art04d SN - 0342-183X VL - 62 IS - 1 SP - 51 EP - 64 PB - Reinhardt CY - München ER - TY - GEN A1 - Frieler, Katja A1 - Levermann, Anders A1 - Elliott, J. A1 - Heinke, J. A1 - Arneth, A. A1 - Bierkens, M. F. P. A1 - Ciais, Philippe A1 - Clark, D. B. A1 - Deryng, D. A1 - Doell, P. A1 - Falloon, P. A1 - Fekete, B. A1 - Folberth, Christian A1 - Friend, A. D. A1 - Gellhorn, C. A1 - Gosling, S. N. A1 - Haddeland, I. A1 - Khabarov, N. A1 - Lomas, M. A1 - Masaki, Y. A1 - Nishina, K. A1 - Neumann, K. A1 - Oki, T. A1 - Pavlick, R. A1 - Ruane, A. C. A1 - Schmid, E. A1 - Schmitz, C. A1 - Stacke, T. A1 - Stehfest, E. A1 - Tang, Q. A1 - Wisser, D. A1 - Huber, V. A1 - Piontek, Franziska A1 - Warszawski, L. A1 - Schewe, Jacob A1 - Lotze-Campen, Hermann A1 - Schellnhuber, Hans Joachim T1 - A framework for the cross-sectoral integration of multi-model impact projections BT - land use decisions under climate impacts uncertainties T2 - Earth system dynamics N2 - Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop-and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 457 KW - global food demand KW - water availability KW - elevated CO2 KW - future KW - carbon KW - system KW - productivity KW - agriculture KW - emissions KW - scarcity Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407968 ER - TY - JOUR A1 - Frieler, Katja A1 - Levermann, Anders A1 - Elliott, J. A1 - Heinke, Jens A1 - Arneth, A. A1 - Bierkens, M. F. P. A1 - Ciais, Philippe A1 - Clark, D. B. A1 - Deryng, D. A1 - Doell, P. A1 - Falloon, P. A1 - Fekete, B. A1 - Folberth, Christian A1 - Friend, A. D. A1 - Gellhorn, C. A1 - Gosling, S. N. A1 - Haddeland, I. A1 - Khabarov, N. A1 - Lomas, M. A1 - Masaki, Y. A1 - Nishina, K. A1 - Neumann, K. A1 - Oki, T. A1 - Pavlick, R. A1 - Ruane, A. C. A1 - Schmid, E. A1 - Schmitz, C. A1 - Stacke, T. A1 - Stehfest, E. A1 - Tang, Q. A1 - Wisser, D. A1 - Huber, Veronika A1 - Piontek, Franziska A1 - Warszawski, Lila A1 - Schewe, Jacob A1 - Lotze-Campen, Hermann A1 - Schellnhuber, Hans Joachim T1 - A framework for the cross-sectoral integration of multi-model impact projections BT - land use decisions under climate impacts uncertainties JF - Earth system dynamics N2 - Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop-and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making. Y1 - 2015 U6 - https://doi.org/10.5194/esd-6-447-2015 SN - 2190-4979 SN - 2190-4987 VL - 6 IS - 2 SP - 447 EP - 460 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Mohr, Christian Heinrich A1 - Montgomery, David R. A1 - Huber, Anton A1 - Bronstert, Axel A1 - Iroume, Andres T1 - Streamflow response in small upland catchments in the Chilean coastal range to the M-W 8.8 Maule earthquake on 27 February 2010 JF - Journal of geophysical research : Earth surface N2 - Hydrological response to earthquakes has long been observed, yet the mechanisms responsible still remain unclear and likely vary in space and time. This study explores the base flow response in small upland catchments of the Coastal Range of south-central Chile after the M-W 8.8 Maule earthquake of 27 February 2010. An initial decline in streamflow followed by an increase of up to 400% of the discharge measured immediately before the earthquake occurred, and diurnal streamflow oscillations intensified after the earthquake. Neither response time, nor time to maximum streamflow discharge showed any relationship with catchment topography or size, suggesting non-uniform release of water across the catchments. The fast response, unaffected stream water temperatures and a simple diffusion model point to the sandy saprolite as the source of the excess water. Base flow recession analysis reveals no evidence for substantial enhancement of lateral hydraulic conductivity in the saprolite after the earthquake. Seismic energy density reached similar to 170 J/m(3) for the main shock and similar to 0.9 J/m(3) for the aftershock, exceeding the threshold for liquefaction by undrained consolidation only during the main shock. Although increased hydraulic gradient due to ground acceleration-triggered, undrained consolidation is consistent with empirical magnitude-distance relationships for liquefaction, the lack of independent evidence for liquefaction means that enhanced vertical permeability (probably in combination with co-seismic near-surface dilatancy) cannot be excluded as a potential mechanism. Undrained consolidation may have released additional water from the saturated saprolite into the overlying soil, temporarily reducing water transfer to the creeks but enlarging the cross-section of the saturated zone, which in turn enhanced streamflow after establishment of a new hydraulic equilibrium. The enlarged saturated zone facilitated water uptake by roots and intensified evapotranspiration. Y1 - 2012 U6 - https://doi.org/10.1029/2011JF002138 SN - 0148-0227 VL - 117 IS - 23 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Mohr, Christian Heinrich A1 - Coppus, Ruben A1 - Iroume, Andres A1 - Huber, Anton A1 - Bronstert, Axel T1 - Runoff generation and soil erosion processes after clear cutting JF - Journal of geophysical research : Earth surface N2 - Timber harvesting by clear cutting is known to impose environmental impacts, including severe disturbance of the soil hydraulic properties which intensify the frequency and magnitude of surface runoff and soil erosion. However, it remains unanswered if harvest areas act as sources or sinks for runoff and soil erosion and whether such behavior operates in a steady state or evolves through time. For this purpose, 92 small-scale rainfall simulations of different intensities were carried out under pine plantation conditions and on two clear-cut harvest areas of different age. Nonparametrical Random Forest statistical models were set up to quantify the impact of environmental variables on the hydrological and erosion response. Regardless of the applied rainfall intensity, runoff always initiated first and yielded most under plantation cover. Counter to expectations, infiltration rates increased after logging activities. Once a threshold rainfall intensity of 20mm/h was exceeded, the younger harvest area started to act as a source for both runoff and erosion after connectivity was established, whereas it remained a sink under lower applied rainfall intensities. The results suggest that the impact of microtopography on surface runoff connectivity and water-repellent properties of the topsoil act as first-order controls for the hydrological and erosion processes in such environments. Fast rainfall-runoff response, sediment-discharge-hystereses, and enhanced postlogging groundwater recharge at catchment scale support our interpretation. At the end, we show the need to account for nonstationary hydrological and erosional behavior of harvest areas, a fact previously unappreciated in predictive models. KW - infiltration KW - runoff KW - erosion KW - connectivity KW - rainfall simulation KW - catchment Y1 - 2013 U6 - https://doi.org/10.1002/jgrf.20047 SN - 2169-9003 VL - 118 IS - 2 SP - 814 EP - 831 PB - American Geophysical Union CY - Washington ER -