TY - JOUR A1 - Jöst, Moritz A1 - Hensel, Goetz A1 - Kappel, Christian A1 - Druka, Arnis A1 - Sicard, Adrien A1 - Hohmann, Uwe A1 - Beier, Sebastian A1 - Himmelbach, Axel A1 - Waugh, Robbie A1 - Kumlehn, Jochen A1 - Stein, Nils A1 - Lenhard, Michael T1 - The INDETERMINATE DOMAIN Protein BROAD LEAF1 Limits Barley Leaf Width by Restricting Lateral Proliferation JF - Current biology N2 - Variation in the size, shape, and positioning of leaves as the major photosynthetic organs strongly impacts crop yield, and optimizing these aspects is a central aim of cereal breeding [1, 2]. Leaf growth in grasses is driven by cell proliferation and cell expansion in a basal growth zone [3]. Although several factors influencing final leaf size and shape have been identified from rice and maize [4-14], what limits grass leaf growth in the longitudinal or transverse directions during leaf development remains poorly understood. To identify factors involved in this process, we characterized the barley mutant broad leaf1 (blf1). Mutants form wider but slightly shorter leaves due to changes in the numbers of longitudinal cell files and of cells along the leaf length. These differences arise during primordia outgrowth because of more cell divisions in the width direction increasing the number of cell files. Positional cloning, analysis of independent alleles, and transgenic complementation confirm that BLF1 encodes a presumed transcriptional regulator of the INDETERMINATE DOMAIN family. In contrast to loss-of-function mutants, moderate overexpression of BLF1 decreases leaf width below wild-type levels. A functional BLF1-vYFP fusion protein expressed from the endogenous promoter shows a dynamic expression pattern in the shoot apical meristem and young leaf primordia. Thus, we propose that the BLF1 gene regulates barley leaf size by restricting cell proliferation in the leaf-width direction. Given the agronomic importance of canopy traits in cereals, identifying functionally different BLF1 alleles promises to allow for the generation of optimized cereal ideotypes. Y1 - 2016 U6 - https://doi.org/10.1016/j.cub.2016.01.047 SN - 0960-9822 SN - 1879-0445 VL - 26 SP - 903 EP - 909 PB - Cell Press CY - Cambridge ER - TY - GEN A1 - Xie, Chao A1 - Jia, Tianye A1 - Rolls, Edmund T. A1 - Robbins, Trevor W. A1 - Sahakian, Barbara J. A1 - Zhang, Jie A1 - Liu, Zhaowen A1 - Cheng, Wei A1 - Luo, Qiang A1 - Zac Lo, Chun-Yi A1 - Schumann, Gunter A1 - Feng, Jianfeng A1 - Wang, He A1 - Banaschewski, Tobias A1 - Barker, Gareth J. A1 - Bokde, Arun L.W. A1 - Büchel, Christian A1 - Quinlan, Erin Burke A1 - Desrivières, Sylvane A1 - Flor, Herta A1 - Grigis, Antoine A1 - Garavan, Hugh A1 - Gowland, Penny A1 - Heinz, Andreas A1 - Hohmann, Sarah A1 - Ittermann, Bernd A1 - Martinot, Jean-Luc A1 - Paillère Martinot, Marie-Laure A1 - Nees, Frauke A1 - Papadopoulos Orfanos, Dimitri A1 - Paus, Tomáš A1 - Poustka, Luise A1 - Fröhner, Juliane H. A1 - Smolka, Michael N. A1 - Walter, Henrik A1 - Whelan, Robert T1 - Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - BACKGROUND: The orbitofrontal cortex (OFC) is implicated in depression. The hypothesis investigated was whether the OFC sensitivity to reward and nonreward is related to the severity of depressive symptoms. METHODS: Activations in the monetary incentive delay task were measured in the IMAGEN cohort at ages 14 years (n = 1877) and 19 years (n = 1140) with a longitudinal design. Clinically relevant subgroups were compared at ages 19 (high-severity group: n = 116; low-severity group: n = 206) and 14. RESULTS: The medial OFC exhibited graded activation increases to reward, and the lateral OFC had graded activation increases to nonreward. In this general population, the medial and lateral OFC activations were associated with concurrent depressive symptoms at both ages 14 and 19 years. In a stratified high-severity depressive symptom group versus control group comparison, the lateral OFC showed greater sensitivity for the magnitudes of activations related to nonreward in the high-severity group at age 19 (p = .027), and the medial OFC showed decreased sensitivity to the reward magnitudes in the high-severity group at both ages 14 (p = .002) and 19 (p = .002). In a longitudinal design, there was greater sensitivity to nonreward of the lateral OFC at age 14 for those who exhibited high depressive symptom severity later at age 19 (p = .003). CONCLUSIONS: Activations in the lateral OFC relate to sensitivity to not winning, were associated with high depressive symptom scores, and at age 14 predicted the depressive symptoms at ages 16 and 19. Activations in the medial OFC were related to sensitivity to winning, and reduced reward sensitivity was associated with concurrent high depressive symptom scores. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 860 KW - adolescents KW - depression KW - monetary incentive delay task KW - nonreward sensitivity KW - orbitofrontal cortex KW - reward anticipation KW - reward sensitivity KW - ventral striatum Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557882 SN - 1866-8364 IS - 3 ER - TY - JOUR A1 - Xie, Chao A1 - Jia, Tianye A1 - Rolls, Edmund T. A1 - Robbins, Trevor W. A1 - Sahakian, Barbara J. A1 - Zhang, Jie A1 - Liu, Zhaowen A1 - Cheng, Wei A1 - Luo, Qiang A1 - Zac Lo, Chun-Yi A1 - Schumann, Gunter A1 - Feng, Jianfeng A1 - Wang, He A1 - Banaschewski, Tobias A1 - Barker, Gareth J. A1 - Bokde, Arun L.W. A1 - Büchel, Christian A1 - Quinlan, Erin Burke A1 - Desrivières, Sylvane A1 - Flor, Herta A1 - Grigis, Antoine A1 - Garavan, Hugh A1 - Gowland, Penny A1 - Heinz, Andreas A1 - Hohmann, Sarah A1 - Ittermann, Bernd A1 - Martinot, Jean-Luc A1 - Paillère Martinot, Marie-Laure A1 - Nees, Frauke A1 - Papadopoulos Orfanos, Dimitri A1 - Paus, Tomáš A1 - Poustka, Luise A1 - Fröhner, Juliane H. A1 - Smolka, Michael N. A1 - Walter, Henrik A1 - Whelan, Robert T1 - Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms JF - Biological Psychiatry: Cognitive Neuroscience and Neuroimaging N2 - BACKGROUND: The orbitofrontal cortex (OFC) is implicated in depression. The hypothesis investigated was whether the OFC sensitivity to reward and nonreward is related to the severity of depressive symptoms. METHODS: Activations in the monetary incentive delay task were measured in the IMAGEN cohort at ages 14 years (n = 1877) and 19 years (n = 1140) with a longitudinal design. Clinically relevant subgroups were compared at ages 19 (high-severity group: n = 116; low-severity group: n = 206) and 14. RESULTS: The medial OFC exhibited graded activation increases to reward, and the lateral OFC had graded activation increases to nonreward. In this general population, the medial and lateral OFC activations were associated with concurrent depressive symptoms at both ages 14 and 19 years. In a stratified high-severity depressive symptom group versus control group comparison, the lateral OFC showed greater sensitivity for the magnitudes of activations related to nonreward in the high-severity group at age 19 (p = .027), and the medial OFC showed decreased sensitivity to the reward magnitudes in the high-severity group at both ages 14 (p = .002) and 19 (p = .002). In a longitudinal design, there was greater sensitivity to nonreward of the lateral OFC at age 14 for those who exhibited high depressive symptom severity later at age 19 (p = .003). CONCLUSIONS: Activations in the lateral OFC relate to sensitivity to not winning, were associated with high depressive symptom scores, and at age 14 predicted the depressive symptoms at ages 16 and 19. Activations in the medial OFC were related to sensitivity to winning, and reduced reward sensitivity was associated with concurrent high depressive symptom scores. KW - adolescents KW - depression KW - monetary incentive delay task KW - nonreward sensitivity KW - orbitofrontal cortex KW - reward anticipation KW - reward sensitivity KW - ventral striatum Y1 - 2021 U6 - https://doi.org/10.1016/j.bpsc.2020.08.017 SN - 0006-3223 SN - 1873-2402 VL - 6 IS - 3 SP - 259 EP - 269 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Heinrich, Ingo A1 - Balanzategui, Daniel A1 - Bens, Oliver A1 - Blasch, Gerald A1 - Blume, Theresa A1 - Boettcher, Falk A1 - Borg, Erik A1 - Brademann, Brian A1 - Brauer, Achim A1 - Conrad, Christopher A1 - Dietze, Elisabeth A1 - Dräger, Nadine A1 - Fiener, Peter A1 - Gerke, Horst H. A1 - Güntner, Andreas A1 - Heine, Iris A1 - Helle, Gerhard A1 - Herbrich, Marcus A1 - Harfenmeister, Katharina A1 - Heussner, Karl-Uwe A1 - Hohmann, Christian A1 - Itzerott, Sibylle A1 - Jurasinski, Gerald A1 - Kaiser, Knut A1 - Kappler, Christoph A1 - Koebsch, Franziska A1 - Liebner, Susanne A1 - Lischeid, Gunnar A1 - Merz, Bruno A1 - Missling, Klaus Dieter A1 - Morgner, Markus A1 - Pinkerneil, Sylvia A1 - Plessen, Birgit A1 - Raab, Thomas A1 - Ruhtz, Thomas A1 - Sachs, Torsten A1 - Sommer, Michael A1 - Spengler, Daniel A1 - Stender, Vivien A1 - Stüve, Peter A1 - Wilken, Florian T1 - Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE) JF - Vadose zone journal N2 - The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes. Y1 - 2018 U6 - https://doi.org/10.2136/vzj2018.06.0116 SN - 1539-1663 VL - 17 IS - 1 PB - Soil Science Society of America CY - Madison ER -