TY - JOUR A1 - Kaa, Johannes M. A1 - Sternemann, Christian A1 - Appel, Karen A1 - Cerantola, Valerio A1 - Preston, Thomas R. A1 - Albers, Christian A1 - Elbers, Mirko A1 - Libon, Lelia A1 - Makita, Mikako A1 - Pelka, Alexander A1 - Petitgirard, Sylvain A1 - Plückthun, Christian A1 - Roddatis, Vladimir A1 - Sahle, Christoph J. A1 - Spiekermann, Georg A1 - Schmidt, Christian A1 - Schreiber, Anja A1 - Sakrowski, Robin A1 - Tolan, Metin A1 - Wilke, Max A1 - Zastrau, Ulf A1 - Konopkova, Zuzana T1 - Structural and electron spin state changes in an x-ray heated iron carbonate system at the Earth's lower mantle pressures JF - Physical review research N2 - The determination of the spin state of iron-bearing compounds at high pressure and temperature is crucial for our understanding of chemical and physical properties of the deep Earth. Studies on the relationship between the coordination of iron and its electronic spin structure in iron-bearing oxides, silicates, carbonates, iron alloys, and other minerals found in the Earth's mantle and core are scarce because of the technical challenges to simultaneously probe the sample at high pressures and temperatures. We used the unique properties of a pulsed and highly brilliant x-ray free electron laser (XFEL) beam at the High Energy Density (HED) instrument of the European XFEL to x-ray heat and probe samples contained in a diamond anvil cell. We heated and probed with the same x-ray pulse train and simultaneously measured x-ray emission and x-ray diffraction of an FeCO3 sample at a pressure of 51 GPa with up to melting temperatures. We collected spin state sensitive Fe K beta(1,3) fluorescence spectra and detected the sample's structural changes via diffraction, observing the inverse volume collapse across the spin transition. During x-ray heating, the carbonate transforms into orthorhombic Fe4C3O12 and iron oxides. Incipient melting was also observed. This approach to collect information about the electronic state and structural changes from samples contained in a diamond anvil cell at melting temperatures and above will considerably improve our understanding of the structure and dynamics of planetary and exoplanetary interiors. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevResearch.4.033042 SN - 2643-1564 VL - 4 IS - 3 PB - American Physical Society CY - College Park ER - TY - BOOK A1 - Albers, Marion A1 - Appel, Ivo A1 - Bauer, Hartmut A1 - von Bogdandy, Armin A1 - Britz, Gabriele A1 - Bumke, Wolfgang A1 - Fehling, Michael A1 - Gusy, Christoph A1 - Hermes, Georg A1 - Hill, Hermann A1 - Hoffmann-Riem, Wolfgang A1 - Holznagel, Bernd A1 - Köck, Wolfgang A1 - Ladeur, Karl-Heinz A1 - Michael, Lothar A1 - Pitschas, Rainer A1 - Röhl, Hans Christian A1 - Rossen-Stahlfeld, Helge A1 - Sachs, Michael A1 - Sachsofsky, Ute A1 - Schmidt-Aßmann, Eberhard A1 - Schneider, Jens-Peter A1 - Vesting, Thomas ED - Hoffmann-Riem, Wolfgang ED - Schmidt-Aßmann, Eberhard ED - Voßkuhle, Andreas T1 - Grundlagen des Verwaltungsrechts : Bd. II Informationsordnung, Verwaltungsverfahren, Handlungsformen Y1 - 2008 SN - 978-3-406-54718-8 VL - 2 PB - Beck CY - München ER - TY - JOUR A1 - Krstulović, Marija A1 - Rosa, Angelika D. A1 - Ferreira Sanchez, Dario A1 - Libon, Lélia A1 - Albers, Christian A1 - Merkulova, Margarita A1 - Grolimund, Daniel A1 - Irifune, Tetsuo A1 - Wilke, Max T1 - Effect of temperature on the densification of silicate melts to lower earth's mantle conditions JF - Physics of the earth and planetary interiors N2 - Physical properties of silicate melts play a key role for global planetary dynamics, controlling for example volcanic eruption styles, mantle convection and elemental cycling in the deep Earth. They are significantly modified by structural changes at the atomic scale due to external parameters such as pressure and temperature or due to chemistry. Structural rearrangements such as 4- to 6-fold coordination change of Si with increasing depth may profoundly influence melt properties, but have so far mostly been studied at ambient temperature due to experimental difficulties. In order to investigate the structural properties of silicate melts and their densification mechanisms at conditions relevant to the deep Earth's interior, we studied haplo basaltic glasses and melts (albite-diopside composition) at high pressure and temperature conditions in resistively and laser-heated diamond anvil cells using X-ray absorption near edge structure spectroscopy. Samples were doped with 10 wt% of Ge, which is accessible with this experimental technique and which commonly serves as a structural analogue for the network forming cation Si. We acquired spectra on the Ge K edge up to 48 GPa and 5000 K and derived the average Ge-O coordination number NGe-O, and bond distance RGe-O as functions of pressure. Our results demonstrate a continuous transformation from tetrahedral to octahedral coordination between ca. 5 and 30 GPa at ambient temperature. Above 1600 K the data reveal a reduction of the pressure needed to complete conversion to octahedral coordination by ca. 30 %. The results allow us to determine the influence of temperature on the Si coordination number changes in natural melts in the Earth's interior. We propose that the complete transition to octahedral coordination in basaltic melts is reached at about 40 GPa, corresponding to a depth of ca. 1200 km in the uppermost lower mantle. At the core-mantle boundary (2900 km, 130 GPa, 3000 K) the existence of non-buoyant melts has been proposed to explain observed low seismic wave velocity features. Our results highlight that the melt composition can affect the melt density at such extreme conditions and may strongly influence the structural response. KW - Silicate melts KW - Densification KW - High pressure and high temperature; KW - XANES KW - Coordination number KW - Ultra-low velocity zones Y1 - 2022 U6 - https://doi.org/10.1016/j.pepi.2021.106823 SN - 0031-9201 SN - 1872-7395 VL - 323 PB - Elsevier CY - Amsterdam ER -