TY - JOUR A1 - Nidever, David L. A1 - Olsen, Knut A1 - Walker, Alistair R. A1 - Katherina Vivas, A. A1 - Blum, Robert D. A1 - Kaleida, Catherine A1 - Choi, Yumi A1 - Conn, Blair C. A1 - Gruendl, Robert A. A1 - Bell, Eric F. A1 - Besla, Gurtina A1 - Munoz, Ricardo R. A1 - Gallart, Carme A1 - Martin, Nicolas F. A1 - Olszewski, Edward W. A1 - Saha, Abhijit A1 - Monachesi, Antonela A1 - Monelli, Matteo A1 - de Boer, Thomas J. L. A1 - Johnson, L. Clifton A1 - Zaritsky, Dennis A1 - Stringfellow, Guy S. A1 - van der Marel, Roeland P. A1 - Cioni, Maria-Rosa L. A1 - Jin, Shoko A1 - Majewski, Steven R. A1 - Martinez-Delgado, David A1 - Monteagudo, Lara A1 - Noel, Noelia E. D. A1 - Bernard, Edouard J. A1 - Kunder, Andrea A1 - Chu, You-Hua A1 - Bell, Cameron P. M. A1 - Santana, Felipe A1 - Frechem, Joshua A1 - Medina, Gustavo E. A1 - Parkash, Vaishali A1 - Seron Navarrete, J. C. A1 - Hayes, Christian T1 - SMASH: Survey of the MAgellanic Stellar History JF - The astronomical journal N2 - The Large and Small Magellanic Clouds are unique local laboratories for studying the formation and evolution of small galaxies in exquisite detail. The Survey of the MAgellanic Stellar History (SMASH) is an NOAO community Dark Energy Camera (DECam) survey of the Clouds mapping 480 deg2 (distributed over similar to 2400 square degrees at similar to 20% filling factor) to similar to 24th. mag in ugriz. The primary goals of SMASH are to identify low surface brightness stellar populations associated with the stellar halos and tidal debris of the Clouds, and to derive spatially resolved star formation histories. Here, we present a summary of the survey, its data reduction, and a description of the first public Data Release (DR1). The SMASH DECam data have been reduced with a combination of the NOAO Community Pipeline, the PHOTRED automated point-spread-function photometry pipeline, and custom calibration software. The astrometric precision is similar to 15 mas and the accuracy is similar to 2 mas with respect to the Gaia reference frame. The photometric precision is similar to 0.5%-0.7% in griz and similar to 1% in u with a calibration accuracy of similar to 1.3% in all bands. The median 5s point source depths in ugriz are 23.9, 24.8, 24.5, 24.2, and 23.5 mag. The SMASH data have already been used to discover the Hydra II Milky Way satellite, the SMASH 1 old globular cluster likely associated with the LMC, and extended stellar populations around the LMC out to R. similar to. 18.4 kpc. SMASH DR1 contains measurements of similar to 100 million objects distributed in 61 fields. A prototype version of the NOAO Data Lab provides data access and exploration tools. KW - galaxies: dwarf KW - galaxies: individual (Large Magellanic Cloud, Small Magellanic Cloud) KW - Local Group KW - Magellanic Clouds KW - surveys Y1 - 2017 U6 - https://doi.org/10.3847/1538-3881/aa8d1c SN - 0004-6256 SN - 1538-3881 VL - 154 SP - 310 EP - 326 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Nishikawa, K.-I. A1 - Zhang, B. A1 - Choi, E. J. A1 - Min, K. W. A1 - Niemiec, J. A1 - Medvedev, M. A1 - Hardee, P. A1 - Mizuno, Y. A1 - Nordlund, A. A1 - Frederiksen, J. A1 - Sol, H. A1 - Pohl, Martin A1 - Hartmann, D. H. A1 - Fishman, G.J. T1 - Radiation from accelerated particles in shocks T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs in the shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and for particle acceleration. These magnetic fields contribute to the electron’s transverse eflection behind the shock. The “jitter” radiation from deflected electrons in turbulent magnetic fields has properties different from synchrotron radiation calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure of gamma-ray bursts, relativistic jets in general, and supernova remnants. In order to calculate radiation from first principles and go beyond the standard synchrotron model, we have used PIC simulations. We present synthetic spectra to compare with the spectra obtained from Fermi observations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 600 KW - relativistic jets KW - Weibel instability KW - magnetic field generation KW - particle acceleration KW - radiation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413128 SN - 1866-8372 IS - 600 SP - 371 EP - 372 ER - TY - JOUR A1 - Nishikawa, Ken-Ichi A1 - Hardee, P. A1 - Zhang, B. A1 - Dutan, I. A1 - Medvedev, M. A1 - Choi, E. J. A1 - Min, K. W. A1 - Niemiec, J. A1 - Mizuno, Y. A1 - Nordlund, Ake A1 - Frederiksen, Jacob Trier A1 - Sol, H. A1 - Pohl, Martin A1 - Hartmann, D. H. T1 - Magnetic field generation in a jet-sheath plasma via the kinetic Kelvin-Helmholtz instability JF - Annales geophysicae N2 - We have investigated the generation of magnetic fields associated with velocity shear between an unmagnetized relativistic jet and an unmagnetized sheath plasma. We have examined the strong magnetic fields generated by kinetic shear (Kelvin-Helmholtz) instabilities. Compared to the previous studies using counter-streaming performed by Alves et al. (2012), the structure of the kinetic Kelvin-Helmholtz instability (KKHI) of our jet-sheath configuration is slightly different, even for the global evolution of the strong transverse magnetic field. In our simulations the major components of growing modes are the electric field E-z, perpendicular to the flow boundary, and the magnetic field B-y, transverse to the flow direction. After the B-y component is excited, an induced electric field E-x, parallel to the flow direction, becomes significant. However, other field components remain small. We find that the structure and growth rate of KKHI with mass ratios m(i)/m(e) = 1836 and m(i)/m(e) = 20 are similar. In our simulations in the nonlinear stage is not as clear as in counter-streaming cases. The growth rate for a mildly-relativistic jet case (gamma(j) = 1.5) is larger than for a relativistic jet case (gamma(j) = 15). KW - Solar physics KW - astrophysics KW - astronomy (Energetic particles) Y1 - 2013 U6 - https://doi.org/10.5194/angeo-31-1535-2013 SN - 0992-7689 VL - 31 IS - 9 SP - 1535 EP - 1541 PB - Copernicus CY - Göttingen ER -