TY - JOUR A1 - Cheng, Shifeng A1 - van den Bergh, Erik A1 - Zeng, Peng A1 - Zhong, Xiao A1 - Xu, Jiajia A1 - Liu, Xin A1 - Hofberger, Johannes A1 - de Bruijn, Suzanne A1 - Bhide, Amey S. A1 - Kuelahoglu, Canan A1 - Bian, Chao A1 - Chen, Jing A1 - Fan, Guangyi A1 - Kaufmann, Kerstin A1 - Hall, Jocelyn C. A1 - Becker, Annette A1 - Bräutigam, Andrea A1 - Weber, Andreas P. M. A1 - Shi, Chengcheng A1 - Zheng, Zhijun A1 - Li, Wujiao A1 - Lv, Mingju A1 - Tao, Yimin A1 - Wang, Junyi A1 - Zou, Hongfeng A1 - Quan, Zhiwu A1 - Hibberd, Julian M. A1 - Zhang, Gengyun A1 - Zhu, Xin-Guang A1 - Xu, Xun A1 - Schranz, M. Eric T1 - The Tarenaya hassleriana Genome Provides insight Into Reproductive Trait and Genome Evolution of Crucifers JF - The plant cell N2 - The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-alpha) that is independent of the Brassicaceae-specific duplication (At-alpha) and nested Brassica (Br-a) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical SERINE RECEPTOR KINASE receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes. Y1 - 2013 U6 - https://doi.org/10.1105/tpc.113.113480 SN - 1040-4651 VL - 25 IS - 8 SP - 2813 EP - 2830 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Xu, Yaolin A1 - Dong, Kang A1 - Jie, Yulin A1 - Adelhelm, Philipp A1 - Chen, Yawei A1 - Xu, Liang A1 - Yu, Peiping A1 - Kim, Junghwa A1 - Kochovski, Zdravko A1 - Yu, Zhilong A1 - Li, Wanxia A1 - LeBeau, James A1 - Shao-Horn, Yang A1 - Cao, Ruiguo A1 - Jiao, Shuhong A1 - Cheng, Tao A1 - Manke, Ingo A1 - Lu, Yan T1 - Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives JF - Avanced energy materials N2 - In recent years, due to its great promise in boosting the energy density of lithium batteries for future energy storage, research on the Li metal anode, as an alternative to the graphite anode in Li-ion batteries, has gained significant momentum. However, the practical use of Li metal anodes has been plagued by unstable Li (re)deposition and poor cyclability. Although tremendous efforts have been devoted to the stabilization of Li metal anodes, the mechanisms of electrochemical (re-)deposition/dissolution of Li and solid-electrolyte-interphase (SEI) formation remain elusive. This article highlights the recent mechanistic understandings and observations of Li deposition/dissolution and SEI formation achieved from advanced characterization techniques and simulation methods, and discusses major limitations and open questions in these processes. In particular, the authors provide their perspectives on advanced and emerging/potential methods for obtaining new insights into these questions. In addition, they give an outlook into cutting-edge interdisciplinary research topics for Li metal anodes. It pushes beyond the current knowledge and is expected to accelerate development toward a more in-depth and comprehensive understanding, in order to guide future research on Li metal anodes toward practical application. KW - advanced characterization KW - Li deposition KW - Li dissolution KW - Li metal KW - anodes KW - mechanistic understanding KW - solid-electrolyte-interphase KW - theoretical simulation Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202200398 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 19 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Hu, Ting-Li A1 - Cheng, Feng A1 - Xu, Zhen A1 - Chen, Zhong-Zheng A1 - Yu, Lei A1 - Ban, Qian A1 - Li, Chun-Lin A1 - Pan, Tao A1 - Zhang, Bao-Wei T1 - Molecular and morphological evidence for a new species of the genus Typhlomys (Rodentia: Platacanthomyidae) JF - Zoological research : ZR = Dongwuxue-yanjiu : jikan / published by Kunming Institute of Zoology, Chinese Academy of Sciences, Zhongguo Kexueyuan Kunming Dongwu Yanjiusuo zhuban, Dongwuxue-yanjiu Bianji Weiyuanhui bianji N2 - In this study, we reassessed the taxonomic position of Typhlomys (Rodentia: Platacanthomyidae) from Huangshan, Anhui, China, based on morphological and molecular evidence. Results suggested that Typhlomys is comprised of up to six species, including four currently recognized species ( Typhlomys cinereus, T. chapensis, T. daloushanensis, and T. nanus), one unconfirmed candidate species, and one new species ( Typhlomys huangshanensis sp. nov.). Morphological analyses further supported the designation of the Huangshan specimens found at mid-elevations in the southern Huangshan Mountains (600 m to 1 200 m a.s.l.) as a new species. KW - Morphology KW - Phylogenetics KW - Species delimitation KW - Taxonomy Y1 - 2021 U6 - https://doi.org/10.24272/j.issn.2095-8137.2020.132 SN - 2095-8137 VL - 42 IS - 1 SP - 100 EP - 107 PB - Yunnan Renmin Chubanshe CY - Kunming ER -