TY - JOUR A1 - Chen, Xinwei A1 - Chen, Hanlin A1 - Sobel, Edward A1 - Lin, Xiubin A1 - Cheng, Xiaogan A1 - Yan, Jiakai A1 - Yang, Shaomei T1 - Convergence of the Pamir and the South Tian Shan in the late Cenozoic BT - Insights from provenance analysis in the Wuheshalu section at the convergence area JF - Lithosphere N2 - In response to collision and convergence between India and Asia during the Cenozoic, convergence took place between the Pamir and South Tian Shan. Here we present new detrital zircon U-Pb ages coupled with conglomerate clast counting and sedimentary data from the late Cenozoic Wuheshalu section in the convergence zone, to shed light on the convergence process of the Pamir and South Tian Shan. Large Triassic zircon U-Pb age populations in all seven samples suggest that Triassic igneous rocks from the North Pamir were the major source area for the late Cenozoic Wuheshalu section. In the Miocene, large populations of the North Pamir component supports rapid exhumation in the North Pamir and suggest that topography already existed there since the early Miocene. Exhumation of the South Tian Shan was relatively less important in the Miocene and its detritus could only reach a limited area in the foreland area. Gradually increasing sediment loading and convergence of the Pamir and South Tian Shan caused rapid subsidence in the convergence area. Since ca. 6-5.3 Ma, the combination of a major North Pamir component and a minor South Tian Shan component at the Wuheshalu section is consistent with active deformation of the South Tian Shan and the North Pamir. During deposition of the upper Atushi Formation, a larger proportion of North Pamir-derived sediments was deposited in the Wuheshalu section, maybe because faulting and northward propagation of the North Pamir caused northward displacement of the depocenter to north of the Wuheshalu section. Y1 - 2019 U6 - https://doi.org/10.1130/L1028.1 SN - 1941-8264 SN - 1947-4253 VL - 11 IS - 4 SP - 507 EP - 523 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Li, Jian A1 - Wang, Zi-Neng A1 - Chen, You-Peng A1 - Dong, Yun-Peng A1 - Shuai, Han-Lin A1 - Xiao, Xiao-Min A1 - Reichetzeder, Christoph A1 - Hocher, Berthold T1 - Late gestational maternal serum cortisol is inversely associated with fetal brain growth JF - Neuroscience & biobehavioral reviews : official journal of the International Behavioral Neuroscience Society N2 - To analyze the association between fetal brain growth and late gestational blood serum cortisol in normal pregnancy.Blood total cortisol was quantified at delivery in 432 Chinese mother/child pairs. Key inclusion criteria of the cohort were: no structural anomalies of the newborn, singleton pregnancy, no alcohol abuse, no drug abuse or history of smoking no hypertensive disorders and no impairment of glucose tolerance and no use of steroid medication during pregnancy. Differential ultrasound examination of the fetal body was done in early (gestational day 89.95 +/- 7.31), middle (gestational day 160.17 16.12) and late pregnancy (gestational day 268.89 +/- 12.42). Newborn's cortisol was not correlated with any of the ultrasound measurements during pregnancy nor with birth weight. Multivariable regression analysis, considering timing of the ultrasound examination, the child's sex, maternal BMI, maternal age, maternal body weight at delivery, the timing of cortisol measurement and maternal uterine contraction states, revealed that maternal serum total cortisol was significantly negative correlated with ultrasound parameters describing the fetal brain: late biparietal diameter (R-2 =0.512, p =0.009), late head circumference (R-2 = 0.498, p= 0.001), middle biparietal diameter (R-2= 0.819, p = 0.013), middle cerebellum transverse diameter R-2 = 0.76, p= 0.014) and early biparietal diameter(R-2 = 0.819, p = 0.013). The same analysis revealed that birth weight as well as ultrasound parameters such as abdominal circumference and femur length were not correlated to maternal cortisol levels. In conclusion, our study demonstrates that maternal cortisol secretion within physiological ranges may be inversely correlated to fetal brain growth but not to birth weight. It remains to be demonstrated whether maternal cortisol secretion negatively influencing fetal brain growth translates to adverse neurological outcomes in later life. KW - Brain development KW - Fetal programming KW - Cortisol Maternal cortisol KW - Head circumference KW - Biparietal diameter Y1 - 2012 U6 - https://doi.org/10.1016/j.neubiorev.2011.12.006 SN - 0149-7634 VL - 36 IS - 3 SP - 1085 EP - 1092 PB - Elsevier CY - Oxford ER -