TY - JOUR A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Static and dynamic foot characteristics in children aged 1-13 years a cross-sectional study JF - Gait & posture N2 - The aim of this study was to acquire static and dynamic foot geometry and loading in childhood, and to establish data for age groups of a population of 1-13 year old infants and children. A total of 10,382 children were recruited and 7788 children (48% males and 52% females) were finally included into the data analysis. For static foot geometry foot length and foot width were quantified in a standing position. Dynamic foot geometry and loading were assessed during walking on a walkway with self selected speed (Novel Emed X, 100 Hz, 4 sensors/cm(2)). Contact area (CA), peak pressure (PP), force time integral (FTI) and the arch index were calculated for the total, fore-, mid- and hindfoot. Results show that most static and dynamic foot characteristics change continuously during growth and maturation. Static foot length and width increased with age from 13.1 +/- 0.8 cm (length) and 5.7 +/- 0.4 cm (width) in the youngest to 24.4 +/- 1.5 cm (length) and 8.9 +/- 0.6 cm (width) in the oldest. A mean walking velocity of 0.94 +/- 0.25 m/s was observed. Arch-index ranged from 0.32 +/- 0.04 [a.u.] in the one-year old to 0.21 +/- 0.13 [a.u.] in the 5-year olds and remains constant afterwards. This study provides data for static and dynamic foot characteristics in children based on a cohort of 7788 subjects. Static and dynamic foot measures change differently during growth and maturation. Dynamic foot measurements provide additional information about the children's foot compared to static measures. KW - Children KW - Foot KW - Geometry KW - Arch-index KW - Plantar pressure Y1 - 2012 U6 - https://doi.org/10.1016/j.gaitpost.2011.10.357 SN - 0966-6362 VL - 35 IS - 3 SP - 389 EP - 394 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Kopinski, Stephan A1 - Engel, Tilman A1 - Cassel, Michael A1 - Fröhlich, Katja A1 - Mayer, Frank A1 - Carlsohn, Anja T1 - Ultrasound Applied to Subcutaneous Fat Tissue Measurements in International Elite Canoeists JF - International journal of sports medicine N2 - Subcutaneous adipose tissue (SAT) measurements with ultrasound have recently been introduced to assess body fat in elite athletes. However, appropriate protocols and data on various groups of athletes are missing. We investigated intra-rater reliability of SAT measurements using ultrasound in elite canoe athletes. 25 international level canoeists (18 male, 7 female; 23 +/- 4 years; 81 +/- 11 kg; 1.83 +/- 0.09 m; 20 +/- 3 training h/wk) were measured on 2 consecutive days. SAT was assessed with B-mode ultrasound at 8 sites (ISAK): triceps, subscapular, biceps, iliac crest, supraspinal, abdominal, front thigh, medial calf, and quantified using image analysis software. Data was analyzed descriptively (mean +/- SD, [range]). Coefficient of variation (CV %), intraclass correlation coefficient (ICC, 2.1) and absolute (LoA) and ratio limits of agreement (RLoA) were calculated for day-to-day reliability. Mean sum of SAT thickness was 30.0 +/- 19.4 mm [8.0, 80.1 mm], with 3.9 +/- 1.8 mm [1.2 mm subscapular, 8.0 mm abdominal] for individual sites. CV for the sum of sites was 4.7 %, ICC 0.99, LoA 1.7 +/- 3.6 mm, RLoA 0.940 (*/divided by 1.155). Measuring SAT with ultrasound has proved to have excellent day-to-day reliability in elite canoe athletes. Recommendations for standardization of the method will further increase accuracy and reproducibility. KW - subcutaneous adipose tissue KW - skinfold thickness KW - elite athletes KW - body composition KW - ultrasonography Y1 - 2015 U6 - https://doi.org/10.1055/s-0035-1555857 SN - 0172-4622 SN - 1439-3964 VL - 36 IS - 14 SP - 1134 EP - 1141 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Appiah-Dwomoh, Edem Korkor A1 - Carlsohn, Anja A1 - Mayer, Frank T1 - Assessment of Dietary Intake of Long-Distance Race Car Drivers BT - A Pilot Study JF - Sports N2 - Long-distance race car drivers are classified as athletes. The sport is physically and mentally demanding, requiring long hours of practice. Therefore, optimal dietary intake is essential for health and performance of the athlete. The aim of the study was to evaluate dietary intake and to compare the data with dietary recommendations for athletes and for the general adult population according to the German Nutrition Society (DGE). A 24-h dietary recall during a competition preparation phase was obtained from 16 male race car drivers (28.3 ± 6.1 years, body mass index (BMI) of 22.9 ± 2.3 kg/m2). The mean intake of energy, nutrients, water and alcohol was recorded. The mean energy, vitamin B2, vitamin E, folate, fiber, calcium, water and alcohol intake were 2124 ± 814 kcal/day, 1.3 ± 0.5 mg/day, 12.5 ± 9.5 mg/day, 231.0 ± 90.9 ug/day, 21.4 ± 9.4 g/day, 1104 ± 764 mg/day, 3309 ± 1522 mL/day and 0.8 ± 2.5 mL/day respectively. Our study indicated that many of the nutrients studied, including energy and carbohydrate, were below the recommended dietary intake for both athletes and the DGE. KW - long-distance race car driving KW - dietary intake KW - 24 h recall KW - pilot study Y1 - 2018 U6 - https://doi.org/10.3390/sports6040118 SN - 2075-4663 VL - 6 IS - 4 SP - 1 EP - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years JF - PLoS one N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. KW - plantar pressure distribution KW - body-mass index KW - prepubescent children KW - overweight children KW - childhood obesity KW - walking KW - speed KW - forces KW - adolescents KW - prevalence Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0149924 SN - 1932-6203 VL - 11 IS - 2 PB - Public Library of Science CY - Lawrence, Kan. ER - TY - JOUR A1 - Cassel, Michael A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Baur, Heiner A1 - Jerusel, N. A1 - Mayer, Frank T1 - Intra- and interrater variability of sonographic investigations of patella and achilles tendons JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: Clinical examinations of tendon disorders routinely include ultrasound examinations, despite the fact that availability of data concerning validity criteria of these measurements are limited. The present study therefore aims to evaluate the reliability of measurements of Achilles- and Patella tendon diameter and in the detection of structural adaptations. Materials and Methods: In 14 healthy, recreationally active subjects both asymptomatic Achilles (AT) and patella tendons (PT) were measured twice by two examiners in a test-retest design. Besides the detection of anteroposterior (a.p.-) and mediolateral (m.l.-) diameters, areas of hypoechogenicity and neovascularisation were registered. Data were analysed descriptively with calculation of test-retest variability (TRV), intraclass-correlation coefficient (ICC) and Bland and Altman's plots with bias and 95% limits of agreement (LOA). Results: Intra- and interrater differences of AT- and PT-a.p.-diameter varied from 0.2 - 1.2 mm, those of AT- and PT-m.l-diameter from 0.7-5.1 mm. Areas of hypoechogenicity were visible in 24% of the tendons, while 15% showed neovascularisations. Intrarater AT-a.p.-diameters showed sparse deviations (TRV 4.5-7.4%; ICC 0.60-0.84; bias -0.05-0.07 mm; LOA-0.6-0.5 to -1.1 - 1.0 mm), while interrater AT- and PT-m.l.-diameters were highly variable (TRV 13.7-19.7%; ICC 0.11-0.20; bias -1.4-4.3 mm; LOA-5.5-2.7 to -10.5 - 1.9 mm). Conclusion: Our results suggest that the measurement of AT- and PT-a.p.-diameters is a reliable parameter. In contrast, reproducibility of AT- and PT-m.l.-diameters is questionable. The study corroborates the presence of hypoechogenicity and neovascularisation in asymptomatic tendons. KW - ultrasound KW - Achilles tendon KW - Patella tendon KW - intra- and inter-rater variability KW - tendon diameter Y1 - 2012 U6 - https://doi.org/10.1055/s-0031-1281839 SN - 0932-0555 VL - 26 IS - 1 SP - 21 EP - 26 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Mueller, Steffen A1 - Carlsohn, Anja A1 - Mueller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years JF - PLoS one N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0149924 SN - 1932-6203 VL - 11 SP - 1710 EP - 1717 PB - PLoS CY - San Fransisco ER - TY - GEN A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 284 KW - plantar pressure distribution KW - body-mass index KW - prepubescent children KW - overweight children KW - childhood obesity KW - walking KW - speed KW - forces KW - adolescents KW - prevalence Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90108 ER - TY - JOUR A1 - Mayer, Frank A1 - Bonaventura, Klaus A1 - Cassel, Michael A1 - Müller, Steffen A1 - Weber, Josefine A1 - Scharhag-Rosenberger, Friederike A1 - Carlsohn, Anja A1 - Baur, Heiner A1 - Scharhag, Jürgen T1 - Medical results of preparticipation examination in adolescent athletes JF - British journal of sports medicine : the journal of sport and exercise medicine N2 - Background Preparticipation examinations (PPE) are frequently used to evaluate eligibility for competitive sports in adolescent athletes. Nevertheless, the effectiveness of these examinations is under debate since costs are high and its validity is discussed controversial. Purpose To analyse medical findings and consequences in adolescent athletes prior to admission to a sports school. Methods In 733 adolescent athletes (318 girls, 415 boys, age 12.3+/-0.4, 16 sports disciplines), history and clinical examination (musculoskeletal, cardiovascular, general medicine) was performed to evaluate eligibility. PPE was completed by determination of blood parameters, ECG at rest and during ergometry, echocardiography and x-rays and ultrasonography if indicated. Eligibility was either approved or rated with restriction. Recommendations for therapy and/or prevention were given to the athletes and their parents. Results Historical (h) and clinical (c) findings (eg, pain, verified pathologies) were more frequent regarding the musculoskeletal system (h: 120, 16.4%; c: 247, 33.7%) compared to cardiovascular (h: 9, 1.2%; c: 23, 3.1%) or general medicine findings (h: 116, 15.8%; c: 71, 9.7%). ECG at rest was moderately abnormal in 46 (6.3%) and severely abnormal in 25 athletes (3.4%). Exercise ECG was suspicious in 25 athletes (3.4%). Relevant echocardiographic abnormalities were found in 17 athletes (2.3%). In 52 of 358 cases (14.5%), x-rays led to diagnosis (eg, Spondylolisthesis). Eligibility was temporarily restricted in 41 athletes (5.6%). Three athletes (0.4%) had to be excluded from competitive sports. Therapy (eg, physiotherapy, medication) and/or prevention (sensorimotor training, vaccination) recommendations were deduced due to musculoskeletal (t:n = 76,10.3%; p:n = 71,9.8%) and general medicine findings (t:n = 80, 10.9%; p:n = 104, 14.1%). Conclusion Eligibility for competitive sports is restricted in only 5.5% of adolescent athletes at age 12. Eligibility refusals are rare. However, recommendations for therapy and prevention are frequent, mainly regarding the musculoskeletal system. In spite of time and cost consumption, adolescent preparticipation before entering a career in high-performance sports is supported. Y1 - 2012 U6 - https://doi.org/10.1136/bjsports-2011-090966 SN - 0306-3674 VL - 46 IS - 7 SP - 524 EP - 530 PB - BMJ Publ. Group CY - London ER -