TY - JOUR A1 - Nidever, David L. A1 - Olsen, Knut A1 - Walker, Alistair R. A1 - Katherina Vivas, A. A1 - Blum, Robert D. A1 - Kaleida, Catherine A1 - Choi, Yumi A1 - Conn, Blair C. A1 - Gruendl, Robert A. A1 - Bell, Eric F. A1 - Besla, Gurtina A1 - Munoz, Ricardo R. A1 - Gallart, Carme A1 - Martin, Nicolas F. A1 - Olszewski, Edward W. A1 - Saha, Abhijit A1 - Monachesi, Antonela A1 - Monelli, Matteo A1 - de Boer, Thomas J. L. A1 - Johnson, L. Clifton A1 - Zaritsky, Dennis A1 - Stringfellow, Guy S. A1 - van der Marel, Roeland P. A1 - Cioni, Maria-Rosa L. A1 - Jin, Shoko A1 - Majewski, Steven R. A1 - Martinez-Delgado, David A1 - Monteagudo, Lara A1 - Noel, Noelia E. D. A1 - Bernard, Edouard J. A1 - Kunder, Andrea A1 - Chu, You-Hua A1 - Bell, Cameron P. M. A1 - Santana, Felipe A1 - Frechem, Joshua A1 - Medina, Gustavo E. A1 - Parkash, Vaishali A1 - Seron Navarrete, J. C. A1 - Hayes, Christian T1 - SMASH: Survey of the MAgellanic Stellar History JF - The astronomical journal N2 - The Large and Small Magellanic Clouds are unique local laboratories for studying the formation and evolution of small galaxies in exquisite detail. The Survey of the MAgellanic Stellar History (SMASH) is an NOAO community Dark Energy Camera (DECam) survey of the Clouds mapping 480 deg2 (distributed over similar to 2400 square degrees at similar to 20% filling factor) to similar to 24th. mag in ugriz. The primary goals of SMASH are to identify low surface brightness stellar populations associated with the stellar halos and tidal debris of the Clouds, and to derive spatially resolved star formation histories. Here, we present a summary of the survey, its data reduction, and a description of the first public Data Release (DR1). The SMASH DECam data have been reduced with a combination of the NOAO Community Pipeline, the PHOTRED automated point-spread-function photometry pipeline, and custom calibration software. The astrometric precision is similar to 15 mas and the accuracy is similar to 2 mas with respect to the Gaia reference frame. The photometric precision is similar to 0.5%-0.7% in griz and similar to 1% in u with a calibration accuracy of similar to 1.3% in all bands. The median 5s point source depths in ugriz are 23.9, 24.8, 24.5, 24.2, and 23.5 mag. The SMASH data have already been used to discover the Hydra II Milky Way satellite, the SMASH 1 old globular cluster likely associated with the LMC, and extended stellar populations around the LMC out to R. similar to. 18.4 kpc. SMASH DR1 contains measurements of similar to 100 million objects distributed in 61 fields. A prototype version of the NOAO Data Lab provides data access and exploration tools. KW - galaxies: dwarf KW - galaxies: individual (Large Magellanic Cloud, Small Magellanic Cloud) KW - Local Group KW - Magellanic Clouds KW - surveys Y1 - 2017 U6 - https://doi.org/10.3847/1538-3881/aa8d1c SN - 0004-6256 SN - 1538-3881 VL - 154 SP - 310 EP - 326 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Schmidt, Thomas A1 - Cioni, Maria-Rosa L. A1 - Niederhofer, Florian A1 - Bekki, Kenji A1 - Bell, Cameron P. M. A1 - de Grijs, Richard A1 - El Youssoufi, Dalal A1 - Ivanov, Valentin D. A1 - Oliveira, Joana M. A1 - Ripepi, Vincenzo A1 - van Loon, Jacco Th. T1 - The VMC survey: XLV. Proper motion of the outer LMC and the impact of the SMC JF - Astronomy and astrophysics N2 - Context. The Large Magellanic Cloud (LMC) is the most luminous satellite galaxy of the Milky Way and, owing to its companion, the Small Magellanic Cloud (SMC), represents an excellent laboratory to study the interaction of dwarf galaxies. Aims. The aim of this study is to investigate the kinematics of the outer regions of the LMC by using stellar proper motions to understand the impact of interactions, for example with the SMC about 250 Myr ago. Methods. We calculate proper motions using multi-epoch K s -band images from the VISTA survey of the Magellanic Cloud system (VMC). Observations span a time baseline of 2-5 yr. We combine the VMC data with data from the Gaia Early Data Release 3 and introduce a new method to distinguish between Magellanic and Milky Way stars based on a machine learning algorithm. This new technique enables a larger and cleaner sample selection of fainter sources as it reaches below the red clump of the LMC. Results. We investigate the impact of the SMC on the rotational field of the LMC and find hints of stripped SMC debris. The southeastern region of the LMC shows a slow rotational speed compared to the overall rotation. N-body simulations suggest that this could be caused by a fraction of stripped SMC stars located in that particular region that move opposite to the expected rotation. KW - Galaxy: kinematics and dynamics KW - Magellanic Clouds KW - galaxies: KW - interactions KW - proper motions KW - surveys Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202142148 SN - 0004-6361 SN - 1432-0746 VL - 663 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sun, Ning-Chen A1 - de Grijs, Richard A1 - Subramanian, Smitha A1 - Bekki, Kenji A1 - Bell, Cameron P. M. A1 - Cioni, Maria-Rosa L. A1 - Ivanov, Valentin D. A1 - Marconi, Marcella A1 - Oliveira, Joana M. A1 - Piatti, Andres E. A1 - Ripepi, Vincenzo A1 - Rubele, Stefano A1 - Tatton, Ben L. A1 - van Loon, Jacco Th. T1 - The VMC Survey. XXII. Hierarchical Star Formation in the 30 Doradus-N158–N159–N160 Star-forming Complex JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Star formation is a hierarchical process, forming young stellar structures of star clusters, associations, and complexes over a wide range of scales. The star-forming complex in the bar region of the Large Magellanic Cloud is investigated with upper main-sequence stars observed by the VISTA Survey of the Magellanic Clouds. The upper main-sequence stars exhibit highly nonuniform distributions. Young stellar structures inside the complex are identified from the stellar density map as density enhancements of different significance levels. We find that these structures are hierarchically organized such that larger, lower-density structures contain one or several smaller, higher-density ones. They follow power-law size and mass distributions, as well as a lognormal surface density distribution. All these results support a scenario of hierarchical star formation regulated by turbulence. The temporal evolution of young stellar structures is explored by using subsamples of upper main-sequence stars with different magnitude and age ranges. While the youngest subsample, with a median age of log(tau/yr) = 7.2, contains the most substructure, progressively older ones are less and less substructured. The oldest subsample, with a median age of log(tau/yr) = 8.0, is almost indistinguishable from a uniform distribution on spatial scales of 30-300. pc, suggesting that the young stellar structures are completely dispersed on a timescale of similar to 100. Myr. These results are consistent with the characteristics of the 30. Doradus complex and the entire Large Magellanic Cloud, suggesting no significant environmental effects. We further point out that the fractal dimension may be method dependent for stellar samples with significant age spreads. KW - infrared: stars KW - Magellanic Clouds KW - stars: formation Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa911e SN - 0004-637X SN - 1538-4357 VL - 849 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Miller, Amy E. A1 - Cioni, Maria-Rosa L. A1 - de Grijs, Richard A1 - Sun, Ning-Chen A1 - Bell, Cameron P. M. A1 - Choudhury, Samyaday A1 - Ivanov, Valentin D. A1 - Marconi, Marcella A1 - Oliveira, Joana M. A1 - Petr-Gotzens, Monika A1 - Ripepi, Vincenzo A1 - van Loon, Jacco Th. T1 - The VMC survey - XLVII. Turbulence-controlled hierarchical star formation in the large magellanic cloud JF - Monthly notices of the Royal Astronomical Society N2 - We perform a statistical clustering analysis of upper main-sequence stars in the Large Magellanic Cloud (LMC) using data from the Visible and Infrared Survey Telescope for Astronomy survey of the Magellanic Clouds. We map over 2500 young stellar structures at 15 significance levels across similar to 120 square degrees centred on the LMC. The structures have sizes ranging from a few parsecs to over 1 kpc. We find that the young structures follow power-law size and mass distributions. From the perimeter-area relation, we derive a perimeter-area dimension of 1.44 +/- 0.20. From the mass-size relation and the size distribution, we derive two-dimensional fractal dimensions of 1.50 +/- 0.10 and 1.61 +/- 0.20, respectively. We find that the surface density distribution is well represented by a lognormal distribution. We apply the Larson relation to estimate the velocity dispersions and crossing times of these structures. Our results indicate that the fractal nature of the young stellar structures has been inherited from the gas clouds from which they form and that this architecture is generated by supersonic turbulence. Our results also suggest that star formation in the LMC is scale-free from 10 to 700 pc. KW - methods: statistical KW - stars: early-type KW - stars: formation KW - galaxies: individual: Magellanic Clouds KW - galaxies: stellar content KW - galaxies: structure Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac508 SN - 0035-8711 SN - 1365-2966 VL - 512 IS - 1 SP - 1196 EP - 1213 PB - Oxford Univ. Press CY - Oxford ER -