TY - JOUR A1 - Keller, Sebastian A1 - Kunze, Cindy A1 - Bommer, Martin A1 - Paetz, Christian A1 - Menezes, Riya C. A1 - Svatos, Ales A1 - Dobbek, Holger A1 - Schubert, Torsten T1 - Selective Utilization of Benzimidazolyl-Norcobamides as Cofactors by the Tetrachloroethene Reductive Dehalogenase of Sulfurospirillum multivorans JF - Journal of bacteriology N2 - The organohalide-respiring bacterium Sulfurospirillum multivorans produces a unique cobamide, namely, norpseudo-B-12, which serves as cofactor of the tetrachloroethene (PCE) reductive dehalogenase (PceA). As previously reported, a replacement of the adeninyl moiety, the lower base of the cofactor, by exogenously applied 5,6-dimethylbenzimidazole led to inactive PceA. To explore the general effect of benzimidazoles on the PCE metabolism, the susceptibility of the organism for guided biosynthesis of various singly substituted benzimidazolyl-norcobamides was investigated, and their use as cofactor by PceA was analyzed. Exogenously applied 5-methylbenzimidazole (5-MeBza), 5-hydroxybenzimidazole (5-OHBza), and 5-methoxybenzimidazole (5-OMeBza) were found to be efficiently incorporated as lower bases into norcobamides (NCbas). Structural analysis of the NCbas by nuclear magnetic resonance spectroscopy uncovered a regioselectivity in the utilization of these precursors for NCba biosynthesis. When 5-MeBza was added, a mixture of 5-MeBza-norcobamide and 6-MeBza-norcobamide was formed, and the PceA enzyme activity was affected. In the presence of 5-OHBza, almost exclusively 6-OHBza-norcobamide was produced, while in the presence of 5-OMeBza, predominantly 5-OMeBza-norcobamide was detected. Both NCbas were incorporated into PceA, and no negative effect on the PceA activity was observed. In crystal structures of PceA, both NCbas were bound in the base-off mode with the 6-OHBza and 5-OMeBza lower bases accommodated by the same solvent-exposed hydrophilic pocket that harbors the adenine as the lower base of authentic norpseudo-B-12. In this study, a selective production of different norcobamide isomers containing singly substituted benzimidazoles as lower bases is shown, and unique structural insights into their utilization as co-factors by a cobamide-containing enzyme are provided. IMPORTANCE Guided biosynthesis of norcobamides containing singly substituted benzimidazoles as lower bases by the organohalide-respiring epsilonproteobacterium Sulfurospirillum multivorans is reported. An unprecedented specificity in the formation of norcobamide isomers containing hydroxylated or methoxylated benzimidazoles was observed that implicated a strict regioselectivity of the norcobamide biosynthesis in the organism. In contrast to 5,6-dimethylbenzimidazolyl-norcobamide, the incorporation of singly substituted benzimidazolyl-norcobamides as a cofactor into the tetrachloroethene reductive dehalogenase was not impaired. The enzyme was found to be functional with different isomers and not limited to the use of adeninyl-norcobamide. Structural analysis of the enzyme equipped with either adeninyl-or benzimidazolyl-norcobamide cofactors visualized for the first time structurally different cobamides bound in base-off conformation to the cofactor-binding site of a cobamide-containing enzyme. KW - benzimidazoles KW - corrinoid-containing enzymes KW - reductive dehalogenase KW - vitamin B-12 Y1 - 2018 U6 - https://doi.org/10.1128/JB.00584-17 SN - 0021-9193 SN - 1098-5530 VL - 200 IS - 8 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Douglas, John A1 - Akkar, Sinan A1 - Ameri, Gabriele A1 - Bard, Pierre-Yves A1 - Bindi, Dino A1 - Bommer, Julian J. A1 - Bora, Sanjay Singh A1 - Cotton, Fabrice A1 - Derras, Boumediene A1 - Hermkes, Marcel A1 - Kuehn, Nicolas Martin A1 - Luzi, Lucia A1 - Massa, Marco A1 - Pacor, Francesca A1 - Riggelsen, Carsten A1 - Sandikkaya, M. Abdullah A1 - Scherbaum, Frank A1 - Stafford, Peter J. A1 - Traversa, Paola T1 - Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - This article presents comparisons among the five ground-motion models described in other articles within this special issue, in terms of data selection criteria, characteristics of the models and predicted peak ground and response spectral accelerations. Comparisons are also made with predictions from the Next Generation Attenuation (NGA) models to which the models presented here have similarities (e.g. a common master database has been used) but also differences (e.g. some models in this issue are nonparametric). As a result of the differing data selection criteria and derivation techniques the predicted median ground motions show considerable differences (up to a factor of two for certain scenarios), particularly for magnitudes and distances close to or beyond the range of the available observations. The predicted influence of style-of-faulting shows much variation among models whereas site amplification factors are more similar, with peak amplification at around 1s. These differences are greater than those among predictions from the NGA models. The models for aleatory variability (sigma), however, are similar and suggest that ground-motion variability from this region is slightly higher than that predicted by the NGA models, based primarily on data from California and Taiwan. KW - Strong-motion data KW - Ground-motion models KW - Ground-motion prediction equations KW - Style of faulting KW - Site amplification KW - Aleatory variability KW - Epistemic uncertainty KW - Europe KW - Middle East Y1 - 2014 U6 - https://doi.org/10.1007/s10518-013-9522-8 SN - 1570-761X SN - 1573-1456 VL - 12 IS - 1 SP - 341 EP - 358 PB - Springer CY - Dordrecht ER -