TY - JOUR A1 - Bronstert, Axel A1 - Kneis, David A1 - Bogena, Heye R. T1 - Interactions and feedbacks in hydrological change : relevance and possibilities of modelling N2 - The hydrological cycle is a dynamic system by its nature, but sometimes accelerated through anthropogenic activity. A "hydrological change" (i.e. a water cycle that is significantly changing over a longer period of time) can be very different in character, depending on the specific natural conditions and the underlying spatial and temporal scales. Such changes may affect the availability and quality of water as essential pre-requisites for human development and ecosystem stability. Hydrological extremes, such as floods and droughts, may also be affected, what is also vitally important, because of their profound economic and societal impacts. Anthropogenically induced hydrological change can be attributed to three main external causes: first, the Earth's climate is changing significantly and thus directly affecting the terrestrial hydro-systems via the exchange of energy and heat. The second major issue is the land cover and its management that has been modified fundamentally by conversion of land for agriculture, forestry, and other purposes such as industrialisation and urbanisation. Finally, water resources are being used more than ever for human development, especially for agriculture, industrial activities, and navigation. If the regional terrestrial hydrological cycle is changing and counter-measures are desirable, it is from a scientific perspective mandatory to understand the extent and nature of such changes, and, especially, to identify their possible anthropogenic origin. There are, however, fundamental gaps in our knowledge, in particular about the role of feedbacks between individual processes and compartments of the hydrological cycle or the relevance of the interactions with other sub-systems of our planet, such as the atmosphere or the vegetation. This paper mentions several examples of hydrological change and discusses their identification, interaction processes, and feedback mechanisms, along with modelling issues. The possibilities and limitations of modelling are demonstrated by means of two studies: one from the river-lake system on the Middle-Havel River and one from the catchment of the Wahnbach Reservoir. The applied model systems comprise a series of consecutively coupled individual models (so-called one-way-coupling). Model systems that are able reflect feedback effects (two-way- coupling) are still in the development stage. It became clear that the applied model systems were able to reproduce the observed dynamics of the hydrological cycle and of selected matter fluxes. However, one has to be aware that the simulated time periods and scenarios represent rather moderately transient conditions, what is the justification why the one-way-coupling seems to be applicable. Furthermore, it was shown that the modelling uncertainty is considerably large. Nevertheless, this uncertainty can be distinguished from effects of changed internal systems dynamics or from changed boundary conditions, what is a basis for the usability of such model systems for prognostic purposes. Y1 - 2009 SN - 1439-1783 ER - TY - JOUR A1 - Bronstert, Axel A1 - Kneis, David A1 - Bogena, Heye R. T1 - Interaktionen und Rückkopplungen beim hydrologischen Wandel : Relevanz und Möglichkeiten der Modellierung Y1 - 2009 SN - 1439-1783 ER - TY - GEN A1 - Heistermann, Maik A1 - Bogena, Heye A1 - Francke, Till A1 - Güntner, Andreas A1 - Jakobi, Jannis A1 - Rasche, Daniel A1 - Schrön, Martin A1 - Döpper, Veronika A1 - Fersch, Benjamin A1 - Groh, Jannis A1 - Patil, Amol A1 - Pütz, Thomas A1 - Reich, Marvin A1 - Zacharias, Steffen A1 - Zengerle, Carmen A1 - Oswald, Sascha T1 - Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land–atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1272 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-567756 SN - 1866-8372 IS - 1272 SP - 2501 EP - 2519 ER - TY - JOUR A1 - Heistermann, Maik A1 - Bogena, Heye A1 - Francke, Till A1 - Güntner, Andreas A1 - Jakobi, Jannis A1 - Rasche, Daniel A1 - Schrön, Martin A1 - Döpper, Veronika A1 - Fersch, Benjamin A1 - Groh, Jannis A1 - Patil, Amol A1 - Pütz, Thomas A1 - Reich, Marvin A1 - Zacharias, Steffen A1 - Zengerle, Carmen A1 - Oswald, Sascha T1 - Soil moisture observation in a forested headwater catchment: Combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach JF - Earth system science data N2 - Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km(2) Wustebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land-atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-2501-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 5 SP - 2501 EP - 2519 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Heistermann, Maik A1 - Bogena, Heye A1 - Francke, Till A1 - Güntner, Andreas A1 - Jakobi, Jannis A1 - Rasche, Daniel A1 - Schrön, Martin A1 - Döpper, Veronika A1 - Fersch, Benjamin A1 - Groh, Jannis A1 - Patil, Amol A1 - Pütz, Thomas A1 - Reich, Marvin A1 - Zacharias, Steffen A1 - Zengerle, Carmen A1 - Oswald, Sascha T1 - Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach JF - Earth system science data : ESSD N2 - Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land–atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-2501-2022 SN - 1866-3516 SN - 1866-3508 VL - 14 IS - 5 SP - 2501 EP - 2519 PB - Copernicus CY - Katlenburg-Lindau ER - TY - GEN A1 - Schrön, Martin A1 - Köhli, Markus A1 - Scheiffele, Lena A1 - Iwema, Joost A1 - Bogena, Heye R. A1 - Lv, Ling A1 - Martini, Edoardo A1 - Baroni, Gabriele A1 - Rosolem, Rafael A1 - Weimar, Jannis A1 - Mai, Juliane A1 - Cuntz, Matthias A1 - Rebmann, Corinna A1 - Oswald, Sascha A1 - Dietrich, Peter A1 - Schmidt, Ulrich A1 - Zacharias, Steffen T1 - Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 636 KW - forested headwater catchment KW - moisture observing system KW - soil-water content KW - parameterization methods KW - scale KW - field KW - dynamics KW - observatories KW - networks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419134 IS - 636 SP - 5009 EP - 5030 ER - TY - JOUR A1 - Schrön, Martin A1 - Köhli, Markus A1 - Scheiffele, Lena A1 - Iwema, Joost A1 - Bogena, Heye R. A1 - Lv, Ling A1 - Martini, Edoardo A1 - Baroni, Gabriele A1 - Rosolem, Rafael A1 - Weimar, Jannis A1 - Mai, Juliane A1 - Cuntz, Matthias A1 - Rebmann, Corinna A1 - Oswald, Sascha A1 - Dietrich, Peter A1 - Schmidt, Ulrich A1 - Zacharias, Steffen T1 - Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity JF - Hydrology and earth system sciences : HESS N2 - In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling. Y1 - 2017 U6 - https://doi.org/10.5194/hess-21-5009-2017 SN - 1027-5606 SN - 1607-7938 VL - 21 SP - 5009 EP - 5030 PB - Copernicus CY - Göttingen ER -