TY - JOUR A1 - Zoller, Peter A1 - Beth, Thomas A1 - Binosi, D. A1 - Blatt, Rainer A1 - Briegel, Hans J. A1 - Bruss, D. A1 - Calarco, Tommaso A1 - Cirac, Juan Ignacio A1 - Deutsch, David A1 - Eisert, Jens A1 - Ekert, Artur A1 - Fabre, Claude A1 - Gisin, Nicolas A1 - Grangiere, P. A1 - Grassl, Markus A1 - Haroche, Serge A1 - Imamoglu, Atac A1 - Karlson, A. A1 - Kempe, Julia A1 - Kouwenhoven, Leo P. A1 - Kröll, S. A1 - Leuchs, Gerd A1 - Lewenstein, Maciej A1 - Loss, Daniel A1 - Lütkenhaus, Norbert A1 - Massar, Serge A1 - Mooij, J. E. A1 - Plenio, Martin Bodo A1 - Polzik, Eugene A1 - Popescu, Sandu A1 - Rempe, Gerhard A1 - Sergienko, Alexander A1 - Suter, David A1 - Twamley, John A1 - Wendin, Göran A1 - Werner, Reinhard F. A1 - Winter, Andreas A1 - Wrachtrup, Jörg A1 - Zeilinger, Anton T1 - Quantum information processing and communication : Strategic report on current status, visions and goals for research in Europe N2 - We present an excerpt of the document "Quantum Information Processing and Communication: Strategic report on current status, visions and goals for research in Europe", which has been recently published in electronic form at the website of FET (the Future and Emerging Technologies Unit of the Directorate General Information Society of the European Commission, http://www.cordis.lu/ist/fet/qipc-sr.htm). This document has been elaborated, following a former suggestion by FET, by a committee of QIPC scientists to provide input towards the European Commission for the preparation of the Seventh Framework Program. Besides being a document addressed to policy makers and funding agencies (both at the European and national level), the document contains a detailed scientific assessment of the state-of-the-art, main research goals, challenges, strengths, weaknesses, visions and perspectives of all the most relevant QIPC sub-fields, that we report here Y1 - 2005 SN - 1434-6060 ER - TY - JOUR A1 - Kumph, Muir A1 - Henkel, Carsten A1 - Rabl, Peter A1 - Brownnutt, Michael A1 - Blatt, Rainer T1 - Electric-field noise above a thin dielectric layer on metal electrodes JF - NEW JOURNAL OF PHYSICS N2 - The electric-field noise above a layered structure composed of a planar metal electrode covered by a thin dielectric is evaluated and it is found that the dielectric film considerably increases the noise level, in proportion to its thickness. Importantly, even a thin (mono) layer of a low-loss dielectric can enhance the noise level by several orders of magnitude compared to the noise above a bare metal. Close to this layered surface, the power spectral density of the electric field varies with the inverse fourth power of the distance to the surface, rather than with the inverse square, as it would above a bare metal surface. Furthermore, compared to a clean metal, where the noise spectrum does not vary with frequency (in the radio-wave and microwave bands), the dielectric layer can generate electricfield noise which scales in inverse proportion to the frequency. For various realistic scenarios, the noise levels predicted from this model are comparable to those observed in trapped-ion experiments. Thus, these findings are of particular importance for the understanding and mitigation of unwanted heating and decoherence in miniaturized ion traps. KW - ion trap KW - electric field noise KW - fluctuation dissipation Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/2/023020 SN - 1367-2630 VL - 18 SP - 1125 EP - 1136 PB - IOP Publ. Ltd. CY - Bristol ER -