TY - THES A1 - Kralemann, Björn Christian T1 - Die Rekonstruktion invarianter Phasenmodelle aus Daten T1 - Reconstructing invariant phase models from data N2 - Ziel dieser Arbeit ist die Überwindung einer Differenz, die zwischen der Theorie der Phase bzw. der Phasendynamik und ihrer Anwendung in der Zeitreihenanalyse besteht: Während die theoretische Phase eindeutig bestimmt und invariant unter Koordinatentransformationen bzw. gegenüber der jeweils gewählten Observable ist, führen die Standardmethoden zur Abschätzung der Phase aus gegebenen Zeitreihen zu Resultaten, die einerseits von den gewählten Observablen abhängen und so andererseits das jeweilige System keineswegs in eindeutiger und invarianter Weise beschreiben. Um diese Differenz deutlich zu machen, wird die terminologische Unterscheidung von Phase und Protophase eingeführt: Der Terminus Phase wird nur für Variablen verwendet, die dem theoretischen Konzept der Phase entsprechen und daher das jeweilige System in invarianter Weise charakterisieren, während die observablen-abhängigen Abschätzungen der Phase aus Zeitreihen als Protophasen bezeichnet werden. Der zentrale Gegenstand dieser Arbeit ist die Entwicklung einer deterministischen Transformation, die von jeder Protophase eines selbsterhaltenden Oszillators zur eindeutig bestimmten Phase führt. Dies ermöglicht dann die invariante Beschreibung gekoppelter Oszillatoren und ihrer Wechselwirkung. Die Anwendung der Transformation bzw. ihr Effekt wird sowohl an numerischen Beispielen demonstriert - insbesondere wird die Phasentransformation in einem Beispiel auf den Fall von drei gekoppelten Oszillatoren erweitert - als auch an multivariaten Messungen des EKGs, des Pulses und der Atmung, aus denen Phasenmodelle der kardiorespiratorischen Wechselwirkung rekonstruiert werden. Abschließend wird die Phasentransformation für autonome Oszillatoren auf den Fall einer nicht vernachlässigbaren Amplitudenabhängigkeit der Protophase erweitert, was beispielsweise die numerischen Bestimmung der Isochronen des chaotischen Rössler Systems ermöglicht. N2 - The aim of this work is to bridge the gap between the theoretical description of the phase dynamics of coupled oscillators and the application of the theory to model reconstruction from time series analysis. In the theory, the phase of a self-sustained oscillator is defined in an unambiguous way, whereas the standard techniques used to estimate phases from given time series provide observabledependent results, so that generally these estimates deviate from the true phase. To stress this crucial issue, we term the observable-dependent phase-like variables as protophases. The main goal of this work is to develop a deterministic transformation from arbitrary protophases to the true, unique phase of the selfsustained oscillator. This approach allows us to obtain an invariant description of coupled oscillators and of their interaction. The application of the transformation and its efficiency are illustrated by means of numerical examples, as well as by the reconstruction of phase models of the cardiorespiratory interaction from multivariate time series of ECG, pulse and respiration. Next, the transformation from protophases to phases is extended for the case of three coupled oscillators. Finally, we go beyond the phase approximation and extend the phase transformation for autonomous oscillators to the case when the amplitude dynamics cannot be neglected. This technique for example allows us to compute numerically the isochrones of the chaotic Roessler system. KW - nichtlineare Dynamik KW - selbsterhaltende Oszillatoren KW - Phase KW - Protophase KW - Invarianz KW - nonlinear Dynamics KW - self-sustained Oscillators KW - Phase KW - Protophase KW - Invariance Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45057 ER - TY - JOUR A1 - Kralemann, Björn A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael T1 - Detecting triplet locking by triplet synchronization indices JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We discuss the effect of triplet synchrony in oscillatory networks. In this state the phases and the frequencies of three coupled oscillators fulfill the conditions of a triplet locking, whereas every pair of systems remains asynchronous. We suggest an easy to compute measure, a triplet synchronization index, which can be used to detect such states from experimental data. Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevE.87.052904 SN - 1539-3755 VL - 87 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Kralemann, Björn A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael T1 - Reconstructing phase dynamics of oscillator networks JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We generalize our recent approach to the reconstruction of phase dynamics of coupled oscillators from data [B. Kralemann et al., Phys. Rev. E 77, 066205 (2008)] to cover the case of small networks of coupled periodic units. Starting from a multivariate time series, we first reconstruct genuine phases and then obtain the coupling functions in terms of these phases. Partial norms of these coupling functions quantify directed coupling between oscillators. We illustrate the method by different network motifs for three coupled oscillators and for random networks of five and nine units. We also discuss nonlinear effects in coupling. Y1 - 2011 U6 - https://doi.org/10.1063/1.3597647 SN - 1054-1500 VL - 21 IS - 2 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Schwabedal, Justus T. C. A1 - Pikovskij, Arkadij A1 - Kralemann, Björn A1 - Rosenblum, Michael T1 - Optimal phase description of chaotic oscillators JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We introduce an optimal phase description of chaotic oscillations by generalizing the concept of isochrones. On chaotic attractors possessing a general phase description, we define the optimal isophases as Poincare surfaces showing return times as constant as possible. The dynamics of the resultant optimal phase is maximally decoupled from the amplitude dynamics and provides a proper description of the phase response of chaotic oscillations. The method is illustrated with the Rossler and Lorenz systems. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevE.85.026216 SN - 1539-3755 VL - 85 IS - 2 PB - American Physical Society CY - College Park ER -