TY - JOUR A1 - De Lombaerde, Emiel A1 - Verheyen, Kris A1 - Perring, Michael P. A1 - Bernhardt-Roemermann, Markus A1 - Van Calster, Hans A1 - Brunet, Jorg A1 - Chudomelova, Marketa A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Durak, Tomasz A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hommel, Patrick A1 - Jaroszewicz, Bogdan A1 - Kopecky, Martin A1 - Lenoir, Jonathan A1 - Macek, Martin A1 - Máliš, František A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Petřík, Petr A1 - Reczyńska, Kamila A1 - Schmidt, Wolfgang A1 - Swierkosz, Krzysztof A1 - Vild, Ondrej A1 - Wulf, Monika A1 - Baetena, Lander T1 - Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Understorey plant communities play a key role in the functioning of forest ecosystems. Under favourable environmental conditions, competitive understorey species may develop high abundances and influence important ecosystem processes such as tree regeneration. Thus, understanding and predicting the response of competitive understorey species as a function of changing environmental conditions is important for forest managers. In the absence of sufficient temporal data to quantify actual vegetation changes, space-for-time (SFT) substitution is often used, i.e. studies that use environmental gradients across space to infer vegetation responses to environmental change over time. Here we assess the validity of such SFT approaches and analysed 36 resurvey studies from ancient forests with low levels of recent disturbances across temperate Europe to assess how six competitive understorey plant species respond to gradients of overstorey cover, soil conditions, atmospheric N deposition and climatic conditions over space and time. The combination of historical and contemporary surveys allows (i) to test if observed contemporary patterns across space are consistent at the time of the historical survey, and, crucially, (ii) to assess whether changes in abundance over time given recorded environmental change match expectations from patterns recorded along environmental gradients in space. We found consistent spatial relationships at the two periods: local variation in soil variables and overstorey cover were the best predictors of individual species’ cover while interregional variation in coarse-scale variables, i.e. N deposition and climate, was less important. However, we found that our SFT approach could not accurately explain the large variation in abundance changes over time. We thus recommend to be cautious when using SFT substitution to infer species responses to temporal changes. KW - Temperate forest KW - Herb layer KW - Tree regeneration KW - Global change KW - Nitrogen deposition KW - Canopy KW - Spatiotemporal resurvey data KW - Cover abundance KW - Chronosequence KW - forestREplot Y1 - 2018 U6 - https://doi.org/10.1016/j.baae.2018.05.013 SN - 1439-1791 SN - 1618-0089 VL - 30 SP - 52 EP - 64 PB - Elsevier GMBH CY - München ER - TY - JOUR A1 - Vanneste, Thomas A1 - Valdes, Alicia A1 - Verheyen, Kris A1 - Perring, Michael P. A1 - Bernhardt-Roemermann, Markus A1 - Andrieu, Emilie A1 - Brunet, Jorg A1 - Cousins, Sara A. O. A1 - Deconchat, Marc A1 - De Smedt, Pallieter A1 - Diekmann, Martin A1 - Ehrmann, Steffen A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Kolb, Annette A1 - Lenoir, Jonathan A1 - Liira, Jaan A1 - Naaf, Tobias A1 - Paal, Taavi A1 - Wulf, Monika A1 - Decocq, Guillaume A1 - De Frenne, Pieter T1 - Functional trait variation of forest understorey plant communities across Europe JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Global environmental changes are expected to alter the functional characteristics of understorey herb-layer communities, potentially affecting forest ecosystem functioning. However, little is known about what drives the variability of functional traits in forest understories. Here, we assessed the role of different environmental drivers in shaping the functional trait distribution of understorey herbs in fragmented forests across three spatial scales. We focused on 708 small, deciduous forest patches located in 16 agricultural landscape windows, spanning a 2500-km macroclimatic gradient across the temperate forest biome in Europe. We estimated the relative effect of patch-scale, landscape-scale and macroclimatic variables on the community mean and variation of plant height, specific leaf area and seed mass. Macroclimatic variables (monthly temperature and precipitation extremes) explained the largest proportion of variation in community trait means (on average 77% of the explained variation). In contrast, patch-scale factors dominated in explaining community trait variation (on average 68% of the explained variation). Notably, patch age, size and internal heterogeneity had a positive effect on the community-level variability. Landscape-scale variables explained only a minor part of the variation in both trait distribution properties. The variation explained by shared combinations of the variable groups was generally negligible. These findings highlight the importance of considering multiple spatial scales in predictions of environmental-change effects on the functionality of forest understories. We propose that forest management sustainability could benefit from conserving larger, historically continuous and internally heterogeneous forest patches to maximise ecosystem service diversity in rural landscapes. (C) 2018 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved. KW - Agricultural landscapes KW - Biogeography KW - Community ecology KW - Forest understorey KW - Functional trait diversity KW - Fragmentation KW - Global environmental change KW - Landscape connectivity KW - Macroclimatic gradient KW - Multi-scale analysis Y1 - 2018 U6 - https://doi.org/10.1016/j.baae.2018.09.004 SN - 1439-1791 SN - 1618-0089 VL - 34 SP - 1 EP - 14 PB - Elsevier GmbH CY - München ER - TY - JOUR A1 - Wicaksono, Wisnu Adi A1 - Braun, Maria A1 - Bernhardt, Jörg A1 - Riedel, Katharina A1 - Cernava, Tomislav A1 - Berg, Gabriele T1 - Trade-off for survival BT - microbiome response to chemical exposure combines activation of intrinsic resistances and adapted metabolic activity JF - Environment international : a journal of science, technology, health, monitoring and policy N2 - The environmental micmbiota is increasingly exposed to chemical pollution. While the emergence of multi-resistant pathogens is recognized as a global challenge, our understanding of antimicrobial resistance (AMR) development from native microbiomes and the risks associated with chemical exposure is limited. By implementing a lichen as a bioindicator organism and model for a native microbiome, we systematically examined responses towards antimicrobials (colistin, tetracycline, glyphosate, and alkylpyrazine). Despite an unexpectedly high resilience, we identified potential evolutionary consequences of chemical exposure in terms of composition and functioning of native bacterial communities. Major shifts in bacterial composition were observed due to replacement of naturally abundant taxa; e.g. Chthoniobacterales by Pseudomonadales. A general response, which comprised activation of intrinsic resistance and parallel reduction of metabolic activity at RNA and protein levels was deciphered by a multi-omics approach. Targeted analyses of key taxa based on metagenome-assembled genomes reflected these responses but also revealed diversified strategies of their players. Chemical-specific responses were also observed, e.g., glyphosate enriched bacterial r-strategists and activated distinct ARGs. Our work demonstrates that the high resilience of the native micmbiota toward antimicrobial exposure is not only explained by the presence of antibiotic resistance genes but also adapted metabolic activity as a trade-off for survival. Moreover, our results highlight the importance of native microbiomes as important but so far neglected AMR reservoirs. We expect that this phenomenon is representative for a wide range of environmental microbiota exposed to chemicals that potentially contribute to the emergence of antibiotic-resistant bacteria from natural environments. Y1 - 2022 U6 - https://doi.org/10.1016/j.envint.2022.107474 SN - 1873-6750 VL - 168 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - De Frenne, Pieter A1 - Rodriguez-Sanchez, Francisco A1 - Coomes, David Anthony A1 - Bäten, Lander A1 - Versträten, Gorik A1 - Vellend, Mark A1 - Bernhardt-Römermann, Markus A1 - Brown, Carissa D. A1 - Brunet, Jörg A1 - Cornelis, Johnny A1 - Decocq, Guillaume M. A1 - Dierschke, Hartmut A1 - Eriksson, Ove A1 - Gilliam, Frank S. A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Jenkins, Michael A. A1 - Kelly, Daniel L. A1 - Kirby, Keith J. A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Peterken, George A1 - Petrik, Petr A1 - Schultz, Jan A1 - Sonnier, Gregory A1 - Van Calster, Hans A1 - Waller, Donald M. A1 - Walther, Gian-Reto A1 - White, Peter S. A1 - Woods, Kerry D. A1 - Wulf, Monika A1 - Graae, Bente Jessen A1 - Verheyen, Kris T1 - Microclimate moderates plant responses to macroclimate warming JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity. KW - climate change KW - forest management KW - understory KW - climatic debt KW - range shifts Y1 - 2013 U6 - https://doi.org/10.1073/pnas.1311190110 SN - 0027-8424 VL - 110 IS - 46 SP - 18561 EP - 18565 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Verheyen, Kris A1 - Baeten, Lander A1 - De Frenne, Pieter A1 - Bernhardt-Römermann, Markus A1 - Brunet, Jorg A1 - Cornelis, Johnny A1 - Decocq, Guillaume A1 - Dierschke, Hartmut A1 - Eriksson, Ove A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Kirby, Keith J. A1 - Naaf, Tobias A1 - Peterken, George A1 - Petrik, Petr A1 - Pfadenhauer, Joerg A1 - Van Calster, Hans A1 - Walther, Gian-Reto A1 - Wulf, Monika A1 - Verstraeten, Gorik T1 - Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests JF - The journal of ecology N2 - 1. Atmospheric nitrogen (N) deposition is expected to change forest understorey plant community composition and diversity, but results of experimental addition studies and observational studies are not yet conclusive. A shortcoming of observational studies, which are generally based on resurveys or sampling along large deposition gradients, is the occurrence of temporal or spatial confounding factors. 2. We were able to assess the contribution of N deposition versus other ecological drivers on forest understorey plant communities by combining a temporal and spatial approach. Data from 1205 (semi-)permanent vegetation plots taken from 23 rigorously selected understorey resurvey studies along a large deposition gradient across deciduous temperate forest in Europe were compiled and related to various local and regional driving factors, including the rate of atmospheric N deposition, the change in large herbivore densities and the change in canopy cover and composition. 3. Although no directional change in species richness occurred, there was considerable floristic turnover in the understorey plant community and a shift in species composition towards more shade-tolerant and nutrient-demanding species. However, atmospheric N deposition was not important in explaining the observed eutrophication signal. This signal seemed mainly related to a shift towards a denser canopy cover and a changed canopy species composition with a higher share of species with more easily decomposed litter. 4. Synthesis. Our multi-site approach clearly demonstrates that one should be cautious when drawing conclusions about the impact of atmospheric N deposition based on the interpretation of plant community shifts in single sites or regions due to other, concurrent, ecological changes. Even though the effects of chronically increased N deposition on the forest plant communities are apparently obscured by the effects of canopy changes, the accumulated N might still have a significant impact. However, more research is needed to assess whether this N time bomb will indeed explode when canopies will open up again. KW - atmospheric deposition KW - determinants of plant community diversity and structure KW - Ellenberg indicator values KW - forest herbs KW - forest management KW - large herbivores KW - north-western Europe KW - resurveys KW - (semi-)permanent plots Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2745.2011.01928.x SN - 0022-0477 VL - 100 IS - 2 SP - 352 EP - 365 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Bernhardt-Römermann, Markus A1 - Baeten, Lander A1 - Craven, Dylan A1 - De Frenne, Pieter A1 - Hedl, Radim A1 - Lenoir, Jonathan A1 - Bert, Didier A1 - Brunet, Jorg A1 - Chudomelova, Marketa A1 - Decocq, Guillaume A1 - Dierschke, Hartmut A1 - Dirnboeck, Thomas A1 - Dörfler, Inken A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Jaroszewicz, Bogdan A1 - Keczynski, Andrzej A1 - Kelly, Daniel L. A1 - Kirby, Keith J. A1 - Kopecky, Martin A1 - Macek, Martin A1 - Malis, Frantisek A1 - Mirtl, Michael A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Peterken, George A1 - Petrik, Petr A1 - Schmidt, Wolfgang A1 - Standovar, Tibor A1 - Toth, Zoltan A1 - Van Calster, Hans A1 - Verstraeten, Gorik A1 - Vladovic, Jozef A1 - Vild, Ondrej A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Drivers of temporal changes in temperate forest plant diversity vary across spatial scales JF - Global change biology N2 - Global biodiversity is affected by numerous environmental drivers. Yet, the extent to which global environmental changes contribute to changes in local diversity is poorly understood. We investigated biodiversity changes in a meta-analysis of 39 resurvey studies in European temperate forests (3988 vegetation records in total, 17-75years between the two surveys) by assessing the importance of (i) coarse-resolution (i.e., among sites) vs. fine-resolution (i.e., within sites) environmental differences and (ii) changing environmental conditions between surveys. Our results clarify the mechanisms underlying the direction and magnitude of local-scale biodiversity changes. While not detecting any net local diversity loss, we observed considerable among-site variation, partly explained by temporal changes in light availability (a local driver) and density of large herbivores (a regional driver). Furthermore, strong evidence was found that presurvey levels of nitrogen deposition determined subsequent diversity changes. We conclude that models forecasting future biodiversity changes should consider coarse-resolution environmental changes, account for differences in baseline environmental conditions and for local changes in fine-resolution environmental conditions. KW - atmospheric nitrogen deposition KW - evenness KW - forestREplot KW - forest management KW - game browsing KW - Shannon diversity KW - spatiotemporal resurvey data KW - species richness Y1 - 2015 U6 - https://doi.org/10.1111/gcb.12993 SN - 1354-1013 SN - 1365-2486 VL - 21 IS - 10 SP - 3726 EP - 3737 PB - Wiley-Blackwell CY - Hoboken ER -