TY - JOUR A1 - Toulouse, Charlotte Marguerite A1 - Schmucker, Sonja A1 - Metesch, Kristina A1 - Pfannstiel, Jens A1 - Michel, Bernd A1 - Starke, Ines A1 - Möller, Heiko Michael A1 - Stefanski, Volker A1 - Steuber, Julia T1 - Mechanism and impact of catecholamine conversion by Vibrio cholerae JF - Biochimica et biophysica acta : Bioenergetics N2 - Bacterial pathogens are influenced by signaling molecules including the catecholamines adrenaline and noradrenaline which are host-derived hormones and neurotransmitters. Adrenaline and noradrenaline modulate growth, motility and virulence of bacteria. We show that adrenaline is converted by the pathogen Vibrio cholerae to adrenochrome in the course of respiration, and demonstrate that superoxide produced by the respiratory, Na+ - translocating NADH:quinone oxidoreductase (NQR) acts as electron acceptor in the oxidative conversion of adrenaline to adrenochrome. Adrenochrome stimulates growth of V. cholerae, and triggers specific responses in V. cholerae and in immune cells. We performed a quantitative proteome analysis of V. cholerae grown in minimal medium with glucose as carbon source without catecholamines, or with adrenaline, noradrenaline or adrenochrome. Significant regulation of proteins participating in iron transport and iron homeostasis, in energy metabolism, and in signaling was observed upon exposure to adrenaline, noradrenaline or adrenochrome. On the host side, adrenochrome inhibited lipopolysaccharide-triggered formation of TNF-alpha by THP-1 monocytes, though to a lesser extent than adrenaline. It is proposed that adrenochrome produced from adrenaline by respiring V. cholerae functions as effector molecule in pathogen-host interaction. KW - Vibrio cholerae KW - Na+ - NADH:quinone oxidoreductase KW - NQR KW - Superoxide KW - Adrenaline KW - Adrenochrome Y1 - 2019 U6 - https://doi.org/10.1016/j.bbabio.2019.04.003 SN - 0005-2728 SN - 1879-2650 VL - 1860 IS - 6 SP - 478 EP - 487 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Read, Betsy A. A1 - Kegel, Jessica A1 - Klute, Mary J. A1 - Kuo, Alan A1 - Lefebvre, Stephane C. A1 - Maumus, Florian A1 - Mayer, Christoph A1 - Miller, John A1 - Monier, Adam A1 - Salamov, Asaf A1 - Young, Jeremy A1 - Aguilar, Maria A1 - Claverie, Jean-Michel A1 - Frickenhaus, Stephan A1 - Gonzalez, Karina A1 - Herman, Emily K. A1 - Lin, Yao-Cheng A1 - Napier, Johnathan A1 - Ogata, Hiroyuki A1 - Sarno, Analissa F. A1 - Shmutz, Jeremy A1 - Schroeder, Declan A1 - de Vargas, Colomban A1 - Verret, Frederic A1 - von Dassow, Peter A1 - Valentin, Klaus A1 - Van de Peer, Yves A1 - Wheeler, Glen A1 - Dacks, Joel B. A1 - Delwiche, Charles F. A1 - Dyhrman, Sonya T. A1 - Glöckner, Gernot A1 - John, Uwe A1 - Richards, Thomas A1 - Worden, Alexandra Z. A1 - Zhang, Xiaoyu A1 - Grigoriev, Igor V. A1 - Allen, Andrew E. A1 - Bidle, Kay A1 - Borodovsky, M. A1 - Bowler, C. A1 - Brownlee, Colin A1 - Cock, J. Mark A1 - Elias, Marek A1 - Gladyshev, Vadim N. A1 - Groth, Marco A1 - Guda, Chittibabu A1 - Hadaegh, Ahmad A1 - Iglesias-Rodriguez, Maria Debora A1 - Jenkins, J. A1 - Jones, Bethan M. A1 - Lawson, Tracy A1 - Leese, Florian A1 - Lindquist, Erika A1 - Lobanov, Alexei A1 - Lomsadze, Alexandre A1 - Malik, Shehre-Banoo A1 - Marsh, Mary E. A1 - Mackinder, Luke A1 - Mock, Thomas A1 - Müller-Röber, Bernd A1 - Pagarete, Antonio A1 - Parker, Micaela A1 - Probert, Ian A1 - Quesneville, Hadi A1 - Raines, Christine A1 - Rensing, Stefan A. A1 - Riano-Pachon, Diego Mauricio A1 - Richier, Sophie A1 - Rokitta, Sebastian A1 - Shiraiwa, Yoshihiro A1 - Soanes, Darren M. A1 - van der Giezen, Mark A1 - Wahlund, Thomas M. A1 - Williams, Bryony A1 - Wilson, Willie A1 - Wolfe, Gordon A1 - Wurch, Louie L. T1 - Pan genome of the phytoplankton Emiliania underpins its global distribution JF - Nature : the international weekly journal of science N2 - Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions. Y1 - 2013 U6 - https://doi.org/10.1038/nature12221 SN - 0028-0836 SN - 1476-4687 VL - 499 IS - 7457 SP - 209 EP - 213 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Biskaborn, Boris A1 - Smith, Sharon L. A1 - Noetzli, Jeannette A1 - Matthes, Heidrun A1 - Vieira, Gonçalo A1 - Streletskiy, Dmitry A. A1 - Schoeneich, Philippe A1 - Romanovsky, Vladimir E. A1 - Lewkowicz, Antoni G. A1 - Abramov, Andrey A1 - Allard, Michel A1 - Boike, Julia A1 - Cable, William L. A1 - Christiansen, Hanne H. A1 - Delaloye, Reynald A1 - Diekmann, Bernhard A1 - Drozdov, Dmitry A1 - Etzelmüller, Bernd A1 - Große, Guido A1 - Guglielmin, Mauro A1 - Ingeman-Nielsen, Thomas A1 - Isaksen, Ketil A1 - Ishikawa, Mamoru A1 - Johansson, Margareta A1 - Joo, Anseok A1 - Kaverin, Dmitry A1 - Kholodov, Alexander A1 - Konstantinov, Pavel A1 - Kröger, Tim A1 - Lambiel, Christophe A1 - Lanckman, Jean-Pierre A1 - Luo, Dongliang A1 - Malkova, Galina A1 - Meiklejohn, Ian A1 - Moskalenko, Natalia A1 - Oliva, Marc A1 - Phillips, Marcia A1 - Ramos, Miguel A1 - Sannel, A. Britta K. A1 - Sergeev, Dmitrii A1 - Seybold, Cathy A1 - Skryabin, Pavel A1 - Vasiliev, Alexander A1 - Wu, Qingbai A1 - Yoshikawa, Kenji A1 - Zheleznyak, Mikhail A1 - Lantuit, Hugues T1 - Permafrost is warming at a global scale T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007–2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 669 KW - seasonal snow cover KW - thermal state KW - climate-change KW - activ-layer KW - Antarctic Peninsula KW - stability Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425341 SN - 1866-8372 IS - 669 ER - TY - JOUR A1 - Biskaborn, Boris A1 - Smith, Sharon L. A1 - Noetzli, Jeannette A1 - Matthes, Heidrun A1 - Vieira, Goncalo A1 - Streletskiy, Dmitry A. A1 - Schoeneich, Philippe A1 - Romanovsky, Vladimir E. A1 - Lewkowicz, Antoni G. A1 - Abramov, Andrey A1 - Allard, Michel A1 - Boike, Julia A1 - Cable, William L. A1 - Christiansen, Hanne H. A1 - Delaloye, Reynald A1 - Diekmann, Bernhard A1 - Drozdov, Dmitry A1 - Etzelmueller, Bernd A1 - Grosse, Guido A1 - Guglielmin, Mauro A1 - Ingeman-Nielsen, Thomas A1 - Isaksen, Ketil A1 - Ishikawa, Mamoru A1 - Johansson, Margareta A1 - Johannsson, Halldor A1 - Joo, Anseok A1 - Kaverin, Dmitry A1 - Kholodov, Alexander A1 - Konstantinov, Pavel A1 - Kroeger, Tim A1 - Lambiel, Christophe A1 - Lanckman, Jean-Pierre A1 - Luo, Dongliang A1 - Malkova, Galina A1 - Meiklejohn, Ian A1 - Moskalenko, Natalia A1 - Oliva, Marc A1 - Phillips, Marcia A1 - Ramos, Miguel A1 - Sannel, A. Britta K. A1 - Sergeev, Dmitrii A1 - Seybold, Cathy A1 - Skryabin, Pavel A1 - Vasiliev, Alexander A1 - Wu, Qingbai A1 - Yoshikawa, Kenji A1 - Zheleznyak, Mikhail A1 - Lantuit, Hugues T1 - Permafrost is warming at a global scale JF - Nature Communications N2 - Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007-2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 +/- 0.15 degrees C. Over the same period, discontinuous permafrost warmed by 0.20 +/- 0.10 degrees C. Permafrost in mountains warmed by 0.19 +/- 0.05 degrees C and in Antarctica by 0.37 +/- 0.10 degrees C. Globally, permafrost temperature increased by 0.29 +/- 0.12 degrees C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-018-08240-4 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER -