TY - JOUR A1 - Yasuhara, Jiro A1 - Baumann, Otto A1 - Takeyasu, Kunio T1 - Localization of Na/K-ATPase in developing and adult Drosophila melanogaster photoreceptors N2 - Drosophila melanogaster photoreceptors are highly polarized cells and their plasma membrane is organized into distinct domains. Zonula adherens junctions separate a smooth peripheral surface, the equivalent of the basolateral surface in other epithelial cells, from the central surface (cong apical surface). The latter consists of the microvillar rhabdomere and the juxtarhabdomeric domain, a nonmicrovillar area between the rhabdomere and the zonulae adherens. The distribution of Na/K-ATPase over these domains was examined by immunocytochemical, developmental, and genetic approaches. Immunofluorescence and immunogold labeling of adult compound eyes reveal that the distribution of Na/ K-ATPase is concentrated at the peripheral surface in the photoreceptors R1-R6, but extends over the juxtarhabdomeric domain to the rhabdomere in the photoreceptors R7/R8. Developmental analysis demonstrates further that Na/K-ATPase is localized over the entire plasma membrane in all photoreceptors in early pupal eyes. Redistribution of Na/K-ATPase in R1- R6 occurs at about 78% of pupal life, coinciding with the onset of Rh1-rhodopsin expression on the central surface of these cells. Despite the essential role of Rh1 in structural development and intracellular trafficking, Rh1 mutations do not affect the distribution of Na/K-ATPase. These results suggest that Na/K-ATPase and rhodopsin are involved in distinct intracellular localization mechanisms, which are maintained independent of each other. Y1 - 2000 UR - http://www.link.springer.de/link/service/journals/00441/bibs/030002/03000239.htm ER - TY - JOUR A1 - Baumann, Otto A1 - Murphy, Douglas B. T1 - Microtubule-associated movement of mitochondria and small particles in Acanthamoeba castellanii. Y1 - 1995 ER - TY - JOUR A1 - Röser, Claudia A1 - Jordan, Nadine A1 - Balfanz, Sabine A1 - Baumann, Arnd A1 - Walz, Bernd A1 - Baumann, Otto A1 - Blenau, Wolfgang T1 - Molecular and pharmacological characterization of serotonin 5-HT2 alpha and 5-HT7 receptors in the salivary glands of the blowfly calliphora vicina JF - PLoS one N2 - Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca2+ and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2 alpha, Cv5-ht7) that share high similarity with mammalian 5-HT2 and 5-HT7 receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2 alpha-transfected mammalian cells with 5-HT elevates cytosolic [Ca2+] in a dose-dependent manner (EC50 = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC50 = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT2 alpha or Cv5-HT7 in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv(5)-HT2 alpha receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT7 receptor, and clozapine (1 mu M) antagonizes the effects of 5-HT via Cv5-HT7 in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca2+- and cAMP-signalling cascades. Citation: Roser C, Jordan N, Balfanz S, Baumann A, Walz B, et al. (2012) Molecular and Pharmacological Characterization of Serotonin 5-HT2a and 5-HT7 Receptors in the Salivary Glands of the Blowfly Calliphora vicina. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0049459 SN - 1932-6203 VL - 7 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Klose, Sascha Peter A1 - Rolke, Daniel A1 - Baumann, Otto T1 - Morphogenesis of honeybee hypopharyngeal gland during pupal development JF - Frontiers in zoology N2 - Background The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 μm in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 μm. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development. KW - Exocrine gland KW - Insect KW - Epithelial tube KW - Organogenesis KW - Cell polarity KW - Actin cytoskeleton KW - Apoptosis KW - Invagination Y1 - 2017 U6 - https://doi.org/10.1186/s12983-017-0207-z SN - 1742-9994 VL - 14 PB - BioMed Central CY - London ER - TY - GEN A1 - Klose, Sascha Peter A1 - Rolke, Daniel A1 - Baumann, Otto T1 - Morphogenesis of honeybee hypopharyngeal gland during pupal development N2 - Background The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 μm in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 μm. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 337 KW - Exocrine gland KW - Insect KW - Epithelial tube KW - Organogenesis KW - Cell polarity KW - Actin cytoskeleton KW - Apoptosis KW - Invagination Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395712 ER - TY - JOUR A1 - Klose, Sascha Peter A1 - Rolke, Daniel A1 - Baumann, Otto T1 - Morphogenesis of honeybee hypopharyngeal gland during pupal development JF - Frontiers in zoology N2 - Background: The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results: By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 mu m in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 mu m. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions: The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development. KW - Exocrine gland KW - Insect KW - Epithelial tube KW - Organogenesis KW - Cell polarity KW - Actin cytoskeleton KW - Apoptosis KW - Invagination Y1 - 2017 U6 - https://doi.org/10.1186/s12983-017-0207-z SN - 1742-9994 VL - 14 SP - 2866 EP - 2875 PB - BioMed Central CY - London ER - TY - JOUR A1 - Schwarze, Thomas A1 - Kelling, Alexandra A1 - Müller, Holger A1 - Trautmann, Michael A1 - Klamroth, Tillmann A1 - Baumann, Otto A1 - Strauch, Peter A1 - Holdt, Hans-Jürgen T1 - N-2-Pyridinylmethyl-N '-arylmethyl-diaminomaleonitriles: New Highly Selective Chromogenic Chemodosimeters for Copper(II) JF - Chemistry - a European journal KW - amides KW - chemodosimeter KW - colorimetric detection KW - copper KW - sensors KW - UV KW - Vis spectroscopy Y1 - 2012 U6 - https://doi.org/10.1002/chem.201201731 SN - 0947-6539 VL - 18 IS - 34 SP - 10506 EP - 10510 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Barchewitz, Tino A1 - Guljamow, Arthur A1 - Meißner, Sven A1 - Timm, Stefan A1 - Henneberg, Manja A1 - Baumann, Otto A1 - Hagemann, Martin A1 - Dittmann, Elke T1 - Non-canonical localization of RubisCO under high-light conditions in the toxic cyanobacterium Microcystis aeruginosa PCC7806 JF - Environmental microbiology N2 - The frequent production of the hepatotoxin microcystin (MC) and its impact on the lifestyle of bloom-forming cyanobacteria are poorly understood. Here, we report that MC interferes with the assembly and the subcellular localization of RubisCO, in Microcystis aeruginosa PCC7806. Immunofluorescence, electron microscopic and cellular fractionation studies revealed a pronounced heterogeneity in the subcellular localization of RubisCO. At high cell density, RubisCO particles are largely separate from carboxysomes in M. aeruginosa and relocate to the cytoplasmic membrane under high-light conditions. We hypothesize that the binding of MC to RubisCO promotes its membrane association and enables an extreme versatility of the enzyme. Steady-state levels of the RubisCO CO2 fixation product 3-phosphoglycerate are significantly higher in the MC-producing wild type. We also detected noticeable amounts of the RubisCO oxygenase reaction product secreted into the medium that may support the mutual interaction of M. aeruginosa with its heterotrophic microbial community. Y1 - 2019 U6 - https://doi.org/10.1111/1462-2920.14837 SN - 1462-2912 SN - 1462-2920 VL - 21 IS - 12 SP - 4836 EP - 4851 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Bresnick, Anne R. A1 - Wolff-Long, Vicki L. A1 - Baumann, Otto A1 - Pollard, Thomas D. T1 - Phosphorylation of threonine-18 of the regulatory light chain dissociates the ATPase and motor properties of smooth muscle myosin II Y1 - 1995 SN - 006-2960 ER - TY - JOUR A1 - Mahlow, Sebastian A1 - Hejazi, Mahdi A1 - Kuhnert, Franziska A1 - Garz, Andreas A1 - Brust, Henrike A1 - Baumann, Otto A1 - Fettke, Jörg T1 - Phosphorylation of transitory starch by -glucan, water dikinase during starch turnover affects the surface properties and morphology of starch granules JF - New phytologist : international journal of plant science N2 - Glucan, water dikinase (GWD) is a key enzyme of starch metabolism but the physico-chemical properties of starches isolated from GWD-deficient plants and their implications for starch metabolism have so far not been described. Transgenic Arabidopsis thaliana plants with reduced or no GWD activity were used to investigate the properties of starch granules. In addition, using various in vitro assays, the action of recombinant GWD, -amylase, isoamylase and starch synthase 1 on the surface of native starch granules was analysed. The internal structure of granules isolated from GWD mutant plants is unaffected, as thermal stability, allomorph, chain length distribution and density of starch granules were similar to wild-type. However, short glucan chain residues located at the granule surface dominate in starches of transgenic plants and impede GWD activity. A similarly reduced rate of phosphorylation by GWD was also observed in potato tuber starch fractions that differ in the proportion of accessible glucan chain residues at the granule surface. A model is proposed to explain the characteristic morphology of starch granules observed in GWD transgenic plants. The model postulates that the occupancy rate of single glucan chains at the granule surface limits accessibility to starch-related enzymes. KW - Arabidopsis thaliana KW - glucan KW - water dikinase (GWD) KW - sex1-8 KW - starch granule surface KW - starch phosphorylation Y1 - 2014 U6 - https://doi.org/10.1111/nph.12801 SN - 0028-646X SN - 1469-8137 VL - 203 IS - 2 SP - 495 EP - 507 PB - Wiley-Blackwell CY - Hoboken ER -