TY - JOUR A1 - Baumann, Otto A1 - Salvaterra, Paul M. A1 - Takeyasu, Kunio T1 - Developmental changes in beta-subunit composition of Na,K-ATPase in the Drosophila eye N2 - The Drosophila genome contains at least three loci for the Na,K-ATPase beta-subunit; however, only the protein products of nrv1 and nrv2 have been characterized hitherto. Here, we provide evidence that nrv3 also encodes for a functional Na,K-ATPase beta-subunit, as its protein product co-precipitates with the Na,K-ATPase alpha-subunit. Nrv3 expression in adult flies is restricted to the nervous system in which Nrv3 is enriched in selective types of sensory cells. Because Nrv3 expression is especially prominent in the compound eye, we have analyzed the subcellular and developmental distribution of Nrv3 within the visual cells and related this distribution to those of the alpha-subunit and of the beta-subunits Nrv1 and Nrv2. Prospective visual cells express Nrv2 in the third larval instar stage and during the first half of pupal development. During the last third of pupal life, Nrv3 gradually replaces Nrv2 as the Na,K-ATPase beta-subunit in the photoreceptor cells. Adult photoreceptors express Nrv3 as their major beta-subunit; the visual cells R1-R6 co-express Nrv2 at a low level, whereas R7 and R8 co-express Nrv1. Notably, beta-subunits do not co- distribute exactly with the alpha-subunit at some developmental stages, supporting the concept that the alpha-subunit and beta-subunit can exist in the plasma membrane without being engaged in alpha/beta heterodimers. The non-visual cells within the compound eye express almost exclusively Nrv2, which segregates together with the alpha-subunit to septate junctions throughout development. Y1 - 2010 UR - http://www.springerlink.com/content/100524 U6 - https://doi.org/10.1007/s00441-010-0948-x SN - 0302-766X ER - TY - JOUR A1 - Heindorff, Kristoffer A1 - Baumann, Otto T1 - Calcineurin is part of a negative feedback loop in the InsP(3)/Ca2+ signalling pathway in blowfly salivary glands JF - Cell calcium N2 - The ubiquitous InsP(3)/Ca2+ signalling pathway is modulated by diverse mechanisms, i.e. feedback of Ca2+ and interactions with other signalling pathways. In the salivary glands of the blowfly Calliphora vicina, the hormone serotonin (5-HT) causes a parallel rise in intracellular [Ca2+] and [cAMP] via two types of 5-HT receptors. We have shown recently that cAMP/protein kinase A (PKA) sensitizes InsP(3)-induced Ca2+ release. We have now identified the protein phosphatase that counteracts the effect of PKA on 5-HT-induced InsP(3)/Ca2+ signalling. We demonstrate that (1) tautomycin and okadaic acid, inhibitors of protein phosphatases PP1 and PP2A, have no effect on 5-HT-induced Ca2+ signals; (2) cyclosporin A and FK506, inhibitors of Ca2+/calmodulin-activated protein phosphatase calcineurin, cause an increase in the frequency of 5-HT-induced Ca2+ oscillations; (3) the sensitizing effect of cyclosporin A on 5-HT-induced Ca2+ responses does not involve Ca2+ entry into the cells; (4) cyclosporin A increases InsP(3)-dependent Ca2+ release; (5) inhibition of PKA abolishes the effect of cyclosporin A on the 5-HT-induced Ca2+ responses, indicating that PKA and calcineurin act antagonistically on the InsP(3)/Ca2+ signalling pathway. These findings suggest that calcineurin provides a negative feedback on InsP(3)/Ca2+ signalling in blowfly salivary glands, counteracting the effect of PKA and desensitizing the signalling cascade at higher 5-HT concentrations. (C) 2014 Elsevier Ltd. All rights reserved. KW - Calcineurin KW - Ca2+ KW - Ca2+ oscillations KW - cAMP KW - Protein kinase A KW - Intracellular signalling KW - Salivary gland KW - Blowfly KW - Insect Y1 - 2014 U6 - https://doi.org/10.1016/j.ceca.2014.07.009 SN - 0143-4160 SN - 1532-1991 VL - 56 IS - 3 SP - 215 EP - 224 PB - Churchill Livingstone CY - Edinburgh ER - TY - JOUR A1 - Baumann, Otto A1 - Walz, Bernd T1 - The blowfly salivary gland - A model system for analyzing the regulation of plasma membrane V-ATPase JF - Journal of insect physiology N2 - Vacuolar H+-ATPases (V-ATPases) are heteromultimeric proteins that use the energy of ATP hydrolysis for the electrogenic transport of protons across membranes. They are common to all eukaryotic cells and are located in the plasma membrane or in membranes of acid organelles. In many insect epithelia, V-ATPase molecules reside in large numbers in the apical plasma membrane and create an electrochemical proton gradient that is used for the acidification or alkalinization of the extracellular space, the secretion or reabsorption of ions and fluids, the import of nutrients, and diverse other cellular activities. Here, we summarize our results on the functions and regulation of V-ATPase in the tubular salivary gland of the blowfly Calliphora vicina. In this gland, V-ATPase activity energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). Because of particular morphological and physiological features, the blowfly salivary glands are a superior and exemplary system for the analysis of the intracellular signaling pathways and mechanisms that modulate V-ATPase activity and solute transport in an insect epithelium. KW - Vacuolar-type H+-ATPase KW - Insect epithelia KW - Reversible assembly KW - cAMP KW - Phosphorylation KW - Calliphora vicina Y1 - 2012 U6 - https://doi.org/10.1016/j.jinsphys.2011.11.015 SN - 0022-1910 VL - 58 IS - 4 SP - 450 EP - 458 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Heindorff, Kristoffer A1 - Blenau, Wolfgang A1 - Walz, Bernd A1 - Baumann, Otto T1 - Characterization of a Ca2+/calmodulin-dependent AC1 adenylyl cyclase in a non-neuronal tissue, the blowfly salivary gland JF - Cell calcium N2 - Crosstalk between intracellular signalling pathways is a functionally important and widespread phenomenon in cell physiology across phyla. In the salivary gland of the blowfly, serotonin induces fluid secretion via parallel activation of both the InsP(3)/Ca2+ and the cAMP/PKA signalling pathways, which interact on multiple levels. We have determined the molecular identity of a link between both pathways that mediates a Ca2+-dependent rise of intracellular cAMP. Whereas hydrolysis of cAMP via phosphodiesterases is largely independent of Ca2+, cAMP synthesis by adenylyl cyclases (AC) is potentiated in a Ca2+/calmodulin (Ca2+/CaM)-dependent manner. The existence of a Ca2+/CaM-dependent AC is supported by physiological data and a molecular approach. We have cloned Cv rutabaga cDNA, encoding the first blowfly AC, and confirmed its expression in the salivary gland via reverse transcription followed by polymerase chain reaction. The putative gene product of Cv rutabaga is a Ca2+/CaM-dependent type I AC and shows highest homology to Rutabaga from Drosophila. Thus, a Ca2+/CaM-dependent AC serves as a link between the InsP(3)/Ca2+ and the cAMP/PKA signalling pathways in the salivary gland of the blowfly and might be important for the amplification and optimization of the secretory response. KW - Adenylyl cyclase KW - Phosphodiesterase KW - Crosstalk KW - Ca2+ KW - cAMP KW - Intracellular signalling KW - Salivary gland KW - Calliphora vicina KW - Rutabaga Y1 - 2012 U6 - https://doi.org/10.1016/j.ceca.2012.04.016 SN - 0143-4160 VL - 52 IS - 2 SP - 103 EP - 112 PB - Churchill Livingstone CY - Edinburgh ER - TY - JOUR A1 - Mahlow, Sebastian A1 - Hejazi, Mahdi A1 - Kuhnert, Franziska A1 - Garz, Andreas A1 - Brust, Henrike A1 - Baumann, Otto A1 - Fettke, Jörg T1 - Phosphorylation of transitory starch by -glucan, water dikinase during starch turnover affects the surface properties and morphology of starch granules JF - New phytologist : international journal of plant science N2 - Glucan, water dikinase (GWD) is a key enzyme of starch metabolism but the physico-chemical properties of starches isolated from GWD-deficient plants and their implications for starch metabolism have so far not been described. Transgenic Arabidopsis thaliana plants with reduced or no GWD activity were used to investigate the properties of starch granules. In addition, using various in vitro assays, the action of recombinant GWD, -amylase, isoamylase and starch synthase 1 on the surface of native starch granules was analysed. The internal structure of granules isolated from GWD mutant plants is unaffected, as thermal stability, allomorph, chain length distribution and density of starch granules were similar to wild-type. However, short glucan chain residues located at the granule surface dominate in starches of transgenic plants and impede GWD activity. A similarly reduced rate of phosphorylation by GWD was also observed in potato tuber starch fractions that differ in the proportion of accessible glucan chain residues at the granule surface. A model is proposed to explain the characteristic morphology of starch granules observed in GWD transgenic plants. The model postulates that the occupancy rate of single glucan chains at the granule surface limits accessibility to starch-related enzymes. KW - Arabidopsis thaliana KW - glucan KW - water dikinase (GWD) KW - sex1-8 KW - starch granule surface KW - starch phosphorylation Y1 - 2014 U6 - https://doi.org/10.1111/nph.12801 SN - 0028-646X SN - 1469-8137 VL - 203 IS - 2 SP - 495 EP - 507 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Guljamow, Arthur A1 - Delissen, Friedmar A1 - Baumann, Otto A1 - Thuenemann, Andreas F. A1 - Dittmann-Thünemann, Elke T1 - Unique properties of eukaryote-type actin and profilin horizontally transferred to cyanobacteria JF - PLoS one N2 - A eukaryote-type actin and its binding protein profilin encoded on a genomic island in the cyanobacterium Microcystis aeruginosa PCC 7806 co-localize to form a hollow, spherical enclosure occupying a considerable intracellular space as shown by in vivo fluorescence microscopy. Biochemical and biophysical characterization reveals key differences between these proteins and their eukaryotic homologs. Small-angle X-ray scattering shows that the actin assembles into elongated, filamentous polymers which can be visualized microscopically with fluorescent phalloidin. Whereas rabbit actin forms thin cylindrical filaments about 100 mu m in length, cyanobacterial actin polymers resemble a ribbon, arrest polymerization at 510 lam and tend to form irregular multi-strand assemblies. While eukaryotic profilin is a specific actin monomer binding protein, cyanobacterial profilin shows the unprecedented property of decorating actin filaments. Electron micrographs show that cyanobacterial profilin stimulates actin filament bundling and stabilizes their lateral alignment into heteropolymeric sheets from which the observed hollow enclosure may be formed. We hypothesize that adaptation to the confined space of a bacterial cell devoid of binding proteins usually regulating actin polymerization in eukaryotes has driven the co-evolution of cyanobacterial actin and profilin, giving rise to an intracellular entity. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0029926 SN - 1932-6203 VL - 7 IS - 1 SP - 221 EP - 231 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Richter, Katharina Natalia A1 - Rolke, Daniel A1 - Blenau, Wolfgang A1 - Baumann, Otto T1 - Secretory cells in honeybee hypopharyngeal gland: polarized organization and age-dependent dynamics of plasma membrane JF - Cell & tissue research N2 - The honeybee hypopharyngeal gland consists in numerous units, each comprising a secretory cell and a canal cell. The secretory cell discharges its products into a convoluted tubular membrane system, the canaliculus, which is surrounded at regular intervals by rings of actin filaments. Using probes for various membrane components, we analyze the organization of the secretory cells relative to the apicobasal configuration of epithelial cells. The canaliculus was defined by labeling with an antibody against phosphorylated ezrin/radixin/moesin (pERM), a marker protein for the apical membrane domain of epithelial cells. Anti-phosphotyrosine visualizes the canalicular system, possibly by staining the microvillar tips. The open end of the canaliculus leads to a region in which the secretory cell is attached to the canal cell by adherens and septate junctions. The remaining plasma membrane stains for Na,K-ATPase and spectrin and represents the basolateral domain. We also used fluorophore-tagged phalloidin, anti-phosphotyrosine and anti-pERM as probes for the canaliculus in order to describe fine-structural changes in the organization of the canalicular system during the adult life cycle. These probes in conjunction with fluorescence microscopy allow the fast and detailed three-dimensional analysis of the canalicular membrane system and its structural changes in a developmental mode or in response to environmental factors. KW - Hypopharyngeal gland KW - Cell polarity KW - Moesin KW - Actin cytoskeleton KW - Honeybee Y1 - 2016 U6 - https://doi.org/10.1007/s00441-016-2423-9 SN - 0302-766X SN - 1432-0878 VL - 366 SP - 163 EP - 174 PB - Springer CY - New York ER - TY - JOUR A1 - Klose, Sascha Peter A1 - Rolke, Daniel A1 - Baumann, Otto T1 - Morphogenesis of honeybee hypopharyngeal gland during pupal development JF - Frontiers in zoology N2 - Background The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 μm in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 μm. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development. KW - Exocrine gland KW - Insect KW - Epithelial tube KW - Organogenesis KW - Cell polarity KW - Actin cytoskeleton KW - Apoptosis KW - Invagination Y1 - 2017 U6 - https://doi.org/10.1186/s12983-017-0207-z SN - 1742-9994 VL - 14 PB - BioMed Central CY - London ER - TY - JOUR A1 - Baumann, Otto T1 - Disruption of actin filaments causes redistribution of ryanodine receptor Ca2+ channels in honeybee photoreceptor cells Y1 - 2001 ER - TY - JOUR A1 - Baumann, Otto T1 - Distribution of nonmuscle myosin-II in honeybee photoreceptor cells and its possible role in maintaining compound eye architecture Y1 - 2001 ER -