TY - THES A1 - Baumann, Otto T1 - Strukturelle und funktionelle Organisation von Insekten-Photorezeptoren Y1 - 1998 CY - Potsdam ER - TY - JOUR A1 - Voss, Martin A1 - Schmidt, Ruth A1 - Walz, Bernd A1 - Baumann, Otto T1 - Stimulus-induced translocation of the protein kinase A catalytic subunit to the apical membrane in blowfly salivary glands N2 - Secretion in blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT), which activates the InsP(3)/Ca2+ pathway and the cAMP/protein kinase A (PKA) pathway in the secretory cells. The latter signaling cascade induces the activation of a vacuolar H+-ATPase on the apical membrane. Here, we have determined the distribution of PKA by using antibodies against the PKA regulatory subunit-II (PKA-RII) and the PKA catalytic subunit (PKA-C) of Drosophila. PKA is present in high concentrations within the secretory cells. PKA-RII and PKA-C co-distribute in non-stimulated glands, being enriched in the basal portion of the secretory cells. Exposure to 8-CPT-cAMP or 5-HT induces the translocation of PKA-C to the apical membrane, whereas the PKA-RII distribution remains unchanged. The recruitment of PKA-C to the apical membrane corroborates our hypothesis that vacuolar H+-ATPase, which is enriched in this membrane domain, is a target protein for PKA. Y1 - 2009 UR - http://www.springerlink.com/content/100524 U6 - https://doi.org/10.1007/s00441-008-0673-x SN - 0302-766X ER - TY - JOUR A1 - Bresnick, Anne R. A1 - Wolff-Long, Vicki L. A1 - Baumann, Otto A1 - Pollard, Thomas D. T1 - Phosphorylation of threonine-18 of the regulatory light chain dissociates the ATPase and motor properties of smooth muscle myosin II Y1 - 1995 SN - 006-2960 ER - TY - JOUR A1 - Baumann, Otto T1 - Biogenesis of surface domains in fly photoreceptor cells: Fine-structural analysis of the plasma membrane and immunolocalization of Na+, K+-ATPase und alpha-spectrin during cell differentiation. Y1 - 1997 ER - TY - JOUR A1 - Baumann, Otto T1 - Distribution of Na+, K+-ATPase in photoreceptor cells of insects. Y1 - 1997 ER - TY - JOUR A1 - Baumann, Otto A1 - Murphy, Douglas B. T1 - Microtubule-associated movement of mitochondria and small particles in Acanthamoeba castellanii. Y1 - 1995 ER - TY - JOUR A1 - Baumann, Otto A1 - Salvaterra, Paul M. A1 - Takeyasu, Kunio T1 - Developmental changes in beta-subunit composition of Na,K-ATPase in the Drosophila eye N2 - The Drosophila genome contains at least three loci for the Na,K-ATPase beta-subunit; however, only the protein products of nrv1 and nrv2 have been characterized hitherto. Here, we provide evidence that nrv3 also encodes for a functional Na,K-ATPase beta-subunit, as its protein product co-precipitates with the Na,K-ATPase alpha-subunit. Nrv3 expression in adult flies is restricted to the nervous system in which Nrv3 is enriched in selective types of sensory cells. Because Nrv3 expression is especially prominent in the compound eye, we have analyzed the subcellular and developmental distribution of Nrv3 within the visual cells and related this distribution to those of the alpha-subunit and of the beta-subunits Nrv1 and Nrv2. Prospective visual cells express Nrv2 in the third larval instar stage and during the first half of pupal development. During the last third of pupal life, Nrv3 gradually replaces Nrv2 as the Na,K-ATPase beta-subunit in the photoreceptor cells. Adult photoreceptors express Nrv3 as their major beta-subunit; the visual cells R1-R6 co-express Nrv2 at a low level, whereas R7 and R8 co-express Nrv1. Notably, beta-subunits do not co- distribute exactly with the alpha-subunit at some developmental stages, supporting the concept that the alpha-subunit and beta-subunit can exist in the plasma membrane without being engaged in alpha/beta heterodimers. The non-visual cells within the compound eye express almost exclusively Nrv2, which segregates together with the alpha-subunit to septate junctions throughout development. Y1 - 2010 UR - http://www.springerlink.com/content/100524 U6 - https://doi.org/10.1007/s00441-010-0948-x SN - 0302-766X ER - TY - JOUR A1 - Heindorff, Kristoffer A1 - Baumann, Otto T1 - Calcineurin is part of a negative feedback loop in the InsP(3)/Ca2+ signalling pathway in blowfly salivary glands JF - Cell calcium N2 - The ubiquitous InsP(3)/Ca2+ signalling pathway is modulated by diverse mechanisms, i.e. feedback of Ca2+ and interactions with other signalling pathways. In the salivary glands of the blowfly Calliphora vicina, the hormone serotonin (5-HT) causes a parallel rise in intracellular [Ca2+] and [cAMP] via two types of 5-HT receptors. We have shown recently that cAMP/protein kinase A (PKA) sensitizes InsP(3)-induced Ca2+ release. We have now identified the protein phosphatase that counteracts the effect of PKA on 5-HT-induced InsP(3)/Ca2+ signalling. We demonstrate that (1) tautomycin and okadaic acid, inhibitors of protein phosphatases PP1 and PP2A, have no effect on 5-HT-induced Ca2+ signals; (2) cyclosporin A and FK506, inhibitors of Ca2+/calmodulin-activated protein phosphatase calcineurin, cause an increase in the frequency of 5-HT-induced Ca2+ oscillations; (3) the sensitizing effect of cyclosporin A on 5-HT-induced Ca2+ responses does not involve Ca2+ entry into the cells; (4) cyclosporin A increases InsP(3)-dependent Ca2+ release; (5) inhibition of PKA abolishes the effect of cyclosporin A on the 5-HT-induced Ca2+ responses, indicating that PKA and calcineurin act antagonistically on the InsP(3)/Ca2+ signalling pathway. These findings suggest that calcineurin provides a negative feedback on InsP(3)/Ca2+ signalling in blowfly salivary glands, counteracting the effect of PKA and desensitizing the signalling cascade at higher 5-HT concentrations. (C) 2014 Elsevier Ltd. All rights reserved. KW - Calcineurin KW - Ca2+ KW - Ca2+ oscillations KW - cAMP KW - Protein kinase A KW - Intracellular signalling KW - Salivary gland KW - Blowfly KW - Insect Y1 - 2014 U6 - https://doi.org/10.1016/j.ceca.2014.07.009 SN - 0143-4160 SN - 1532-1991 VL - 56 IS - 3 SP - 215 EP - 224 PB - Churchill Livingstone CY - Edinburgh ER - TY - JOUR A1 - Baumann, Otto A1 - Walz, Bernd T1 - The blowfly salivary gland - A model system for analyzing the regulation of plasma membrane V-ATPase JF - Journal of insect physiology N2 - Vacuolar H+-ATPases (V-ATPases) are heteromultimeric proteins that use the energy of ATP hydrolysis for the electrogenic transport of protons across membranes. They are common to all eukaryotic cells and are located in the plasma membrane or in membranes of acid organelles. In many insect epithelia, V-ATPase molecules reside in large numbers in the apical plasma membrane and create an electrochemical proton gradient that is used for the acidification or alkalinization of the extracellular space, the secretion or reabsorption of ions and fluids, the import of nutrients, and diverse other cellular activities. Here, we summarize our results on the functions and regulation of V-ATPase in the tubular salivary gland of the blowfly Calliphora vicina. In this gland, V-ATPase activity energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). Because of particular morphological and physiological features, the blowfly salivary glands are a superior and exemplary system for the analysis of the intracellular signaling pathways and mechanisms that modulate V-ATPase activity and solute transport in an insect epithelium. KW - Vacuolar-type H+-ATPase KW - Insect epithelia KW - Reversible assembly KW - cAMP KW - Phosphorylation KW - Calliphora vicina Y1 - 2012 U6 - https://doi.org/10.1016/j.jinsphys.2011.11.015 SN - 0022-1910 VL - 58 IS - 4 SP - 450 EP - 458 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Heindorff, Kristoffer A1 - Blenau, Wolfgang A1 - Walz, Bernd A1 - Baumann, Otto T1 - Characterization of a Ca2+/calmodulin-dependent AC1 adenylyl cyclase in a non-neuronal tissue, the blowfly salivary gland JF - Cell calcium N2 - Crosstalk between intracellular signalling pathways is a functionally important and widespread phenomenon in cell physiology across phyla. In the salivary gland of the blowfly, serotonin induces fluid secretion via parallel activation of both the InsP(3)/Ca2+ and the cAMP/PKA signalling pathways, which interact on multiple levels. We have determined the molecular identity of a link between both pathways that mediates a Ca2+-dependent rise of intracellular cAMP. Whereas hydrolysis of cAMP via phosphodiesterases is largely independent of Ca2+, cAMP synthesis by adenylyl cyclases (AC) is potentiated in a Ca2+/calmodulin (Ca2+/CaM)-dependent manner. The existence of a Ca2+/CaM-dependent AC is supported by physiological data and a molecular approach. We have cloned Cv rutabaga cDNA, encoding the first blowfly AC, and confirmed its expression in the salivary gland via reverse transcription followed by polymerase chain reaction. The putative gene product of Cv rutabaga is a Ca2+/CaM-dependent type I AC and shows highest homology to Rutabaga from Drosophila. Thus, a Ca2+/CaM-dependent AC serves as a link between the InsP(3)/Ca2+ and the cAMP/PKA signalling pathways in the salivary gland of the blowfly and might be important for the amplification and optimization of the secretory response. KW - Adenylyl cyclase KW - Phosphodiesterase KW - Crosstalk KW - Ca2+ KW - cAMP KW - Intracellular signalling KW - Salivary gland KW - Calliphora vicina KW - Rutabaga Y1 - 2012 U6 - https://doi.org/10.1016/j.ceca.2012.04.016 SN - 0143-4160 VL - 52 IS - 2 SP - 103 EP - 112 PB - Churchill Livingstone CY - Edinburgh ER -