TY - JOUR A1 - Baumann, Otto A1 - Bauer, Alexandra T1 - Development of apical membrane organization and V-ATPase regulation in blowfly salivary glands JF - The journal of experimental biology N2 - Secretory cells in blowfly salivary gland are specialized via morphological and physiological attributes in order to serve their main function, i.e. the transport of solutes at a high rate in response to a hormonal stimulus, namely serotonin (5-HT). This study examines the way that 5-HT-insensitive precursor cells differentiate into morphologically complex 5-HT-responsive secretory cells. By means of immunofluorescence microscopy, immunoblotting and measurements of the transepithelial potential changes, we show the following. (1) The apical membrane of the secretory cells becomes organized into an elaborate system of canaliculi and is folded into pleats during the last pupal day and the first day of adulthood. (2) The structural reorganization of the apical membrane is accompanied by an enrichment of actin filaments and phosphorylated ERM protein (phospho-moesin) at this membrane domain and by the deployment of the membrane-integral part of vacuolar-type H+-ATPase (V-ATPase). These findings suggest a role for phospho-moesin, a linker between actin filaments and membrane components, in apical membrane morphogenesis. (3) The assembly and activation of V-ATPase can be induced immediately after eclosion by way of 8-CPT-cAMP, a membrane-permeant cAMP analogue. (4) 5-HT, however, produces the assembly and activation of V-ATPase only in flies aged for at least 2 h after eclosion, indicating that, at eclosion, the 5-HT receptor/adenylyl cyclase/cAMP signalling pathway is inoperative upstream of cAMP. (5) 5-HT activates both the Ca2+ signalling pathway and the cAMP signalling cascade in fully differentiated secretory cells. However, the functionality of these signalling cascades does not seem to be established in a tightly coordinated manner during cell differentation. KW - secretory cell KW - moesin KW - morphogenesis KW - serotonin KW - vacuolar ATPase KW - cAMP Y1 - 2013 U6 - https://doi.org/10.1242/jeb.077420 SN - 0022-0949 VL - 216 IS - 7 SP - 1225 EP - 1234 PB - Company of Biologists Limited CY - Cambridge ER - TY - JOUR A1 - Marelja, Zvonimir A1 - Chowdhury, Mita Mullick A1 - Dosche, Carsten A1 - Hille, Carsten A1 - Baumann, Otto A1 - Löhmannsröben, Hans-Gerd A1 - Leimkühler, Silke T1 - The L-cysteine desulfurase NFS1 is localized in the cytosol where it provides the sulfur for molybdenum cofactor biosynthesis in humans JF - PLoS one N2 - In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Forster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general. Y1 - 2013 U6 - https://doi.org/10.1371/journal.pone.0060869 SN - 1932-6203 VL - 8 IS - 4 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Walz, Bernd A1 - Baumann, Otto A1 - Zimmermann, Bernhard A1 - Ciriacy-Wantrup, E.v. T1 - Caffeine- and ryanodine-sensitive Ca2+-induced Ca2+ release from the endo plasmatic reticulum in honeybee photoreceptors Y1 - 1995 ER - TY - JOUR A1 - Baumann, Otto A1 - Lutz, Kathleen T1 - Photoreceptor morphogenesis in the Drosophila compound eye : R1-R6 rhabdomeres become twisted just before eclosion N2 - The photosensitive microvilli of Drosophila photoreceptors R1-R6 are not aligned in parallel over the entire length of the visual cells. In the distal half of each cell, the microvilli are slightly tilted toward one side and, in the proximal half, extremely toward the opposite side. This phenomenon, termed rhabdomere twisting, has been known for several decades, but the developmental and cell biological basis of rhabdomere twisting has not been studied so far. We show that rhabdomere twisting is also manifested as molecular polarization of the visual cell, because phosphotyrosine- containing proteins are selectively partitioned to different sides of the rhabdomere stalk in the distal. and proximal sections of each R1-R6 photoreceptor. Both the asymmetrical segregation of phosphotyrosine proteins and the tilting of the microvilli occur shortly before eclosion of the flies, when eye development in all other aspects is considered to be essentially complete. Establishment of rhabdomere twisting occurs in a light-independent manner, because phosphotyrosine staining is unchanged in dark-reared wild-type flies and in mutants with defects in the phototransduction cascade, ninaE(17) and norpA(P24). We conclude that antiphosphotyrosine immunofluorescence can be used as a light microscopic probe for the analysis of rhabdomere twisting and that microvilli tilting represents a type of planar cell polarity that is established by an active process in the last phase of photoreceptor morphogenesis, just prior to eclosion of the flies. Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/31248 U6 - https://doi.org/10.1002/Cne.21030 SN - 0021-9967 ER - TY - THES A1 - Baumann, Otto T1 - Strukturelle und funktionelle Organisation von Insekten-Photorezeptoren Y1 - 1998 CY - Potsdam ER - TY - JOUR A1 - Voss, Martin A1 - Schmidt, Ruth A1 - Walz, Bernd A1 - Baumann, Otto T1 - Stimulus-induced translocation of the protein kinase A catalytic subunit to the apical membrane in blowfly salivary glands N2 - Secretion in blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT), which activates the InsP(3)/Ca2+ pathway and the cAMP/protein kinase A (PKA) pathway in the secretory cells. The latter signaling cascade induces the activation of a vacuolar H+-ATPase on the apical membrane. Here, we have determined the distribution of PKA by using antibodies against the PKA regulatory subunit-II (PKA-RII) and the PKA catalytic subunit (PKA-C) of Drosophila. PKA is present in high concentrations within the secretory cells. PKA-RII and PKA-C co-distribute in non-stimulated glands, being enriched in the basal portion of the secretory cells. Exposure to 8-CPT-cAMP or 5-HT induces the translocation of PKA-C to the apical membrane, whereas the PKA-RII distribution remains unchanged. The recruitment of PKA-C to the apical membrane corroborates our hypothesis that vacuolar H+-ATPase, which is enriched in this membrane domain, is a target protein for PKA. Y1 - 2009 UR - http://www.springerlink.com/content/100524 U6 - https://doi.org/10.1007/s00441-008-0673-x SN - 0302-766X ER - TY - JOUR A1 - Bresnick, Anne R. A1 - Wolff-Long, Vicki L. A1 - Baumann, Otto A1 - Pollard, Thomas D. T1 - Phosphorylation of threonine-18 of the regulatory light chain dissociates the ATPase and motor properties of smooth muscle myosin II Y1 - 1995 SN - 006-2960 ER - TY - JOUR A1 - Baumann, Otto T1 - Biogenesis of surface domains in fly photoreceptor cells: Fine-structural analysis of the plasma membrane and immunolocalization of Na+, K+-ATPase und alpha-spectrin during cell differentiation. Y1 - 1997 ER - TY - JOUR A1 - Baumann, Otto T1 - Distribution of Na+, K+-ATPase in photoreceptor cells of insects. Y1 - 1997 ER - TY - JOUR A1 - Baumann, Otto A1 - Murphy, Douglas B. T1 - Microtubule-associated movement of mitochondria and small particles in Acanthamoeba castellanii. Y1 - 1995 ER -