TY - JOUR A1 - Baumann, Otto A1 - Dames, Petra A1 - Kühnel, Dana A1 - Walz, Bernd T1 - Distribution of serotonergic and dopaminergic nerve fibers in the salivary gland complex of the cockroach Periplaneta americana Y1 - 2002 UR - http://www.biomedcentral.com/1472-6793/2/9 ER - TY - JOUR A1 - Baumann, Otto A1 - Kühnel, Dana A1 - Dames, Petra A1 - Walz, Bernd T1 - Dopaminergic and serotonergic innervation of cockroach salivary glands : distribution and morphology of synapses and release sites N2 - The paired salivary glands in the cockroach are composed of acini with ion-transporting peripheral P-cells and protein-secreting central C-cells, and a duct system for the modification of the primary saliva. Secretory activity is controlled by serotonergic and dopaminergic neurons, whose axons form a dense plexus on the glands. The spatial relationship of release sites for serotonin and dopamine to the various cell types was determined by anti-synapsin immunofluorescence confocal microscopy and electron microscopy. Every C-cell apparently has only serotonergic synapses on its surface. Serotonergic and dopaminergic fibres on the acini have their release zones at a distance of similar to0.5 mum from the P-cells. Nerves between acinar lobules may serve as neurohaemal organs and contain abundant dopaminergic and few serotonergic release sites. Some dopaminergic and serotonergic release sites reside in the duct epithelium, the former throughout the duct system, the latter only in segments next to acini. These findings are consistent with the view that C-cells respond exclusively to serotonin, P-cells to serotonin and dopamine, and most duct cells only to dopamine. Moreover, the data suggest that C-cells are stimulated by serotonin released close to their surface, whereas P-cells and most duct cells are exposed to serotonin/dopamine liberated at some distance Y1 - 2004 ER - TY - JOUR A1 - Rein, Julia A1 - Zimmermann, Bernhard A1 - Hille, Carsten A1 - Lang, Ingo A1 - Walz, Bernd A1 - Baumann, Otto T1 - Fluorescence measurements of serotonin-induced V-ATPase-dependent pH changes at the luminal surface in salivary glands of the blowfly Calliphora vicina N2 - Secretion in blowfly salivary glands is induced by the neurohormone serotonin and powered by a vacuolar-type H+- ATPase (V-ATPase) located in the apical membrane of the secretory cells. We have established a microfluorometric method for analysing pH changes at the luminal surface of the secretory epithelial cells by using the fluorescent dye 5-N- hexadecanoyl-aminofluorescein (HAF). After injection of HAF into the lumen of the tubular salivary gland, the fatty acyl chain of the dye molecule partitions into the outer leaflet of the plasma membrane and its pH-sensitive fluorescent moiety is exposed at the cell surface. Confocal imaging has confirmed that HAF distributes over the entire apical membrane of the secretory cells and remains restricted to this membrane domain. Ratiometric analysis of HAF fluorescence demonstrates that serotonin leads to a reversible dose-dependent acidification at the luminal surface. Inhibition by concanamycin A confirms that the serotonin-induced acidification at the luminal surface is due to H+ transport across the apical membrane via V-ATPase. Measurements with pH-sensitive microelectrodes corroborate a serotonin-induced luminal acidification and demonstrate that luminal pH decreases by about 0.4 pH units at saturating serotonin concentrations. We conclude that ratiometric measurements of HAF fluorescence provide an elegant method for monitoring V-ATPase-dependent H+ transport in the blowfly salivary gland in vivo and for analysing the spatiotemporal pattern of pH changes at the luminal surface Y1 - 2006 UR - http://jeb.biologists.org/ U6 - https://doi.org/10.1242/Jeb.02187 SN - 0022-0949 ER - TY - GEN A1 - Rein, Julia A1 - Voss, Martin A1 - Blenau, Wolfgang A1 - Walz, Bernd A1 - Baumann, Otto T1 - Hormone-induced assembly and activation of V-ATPase in blowfly salivary glands is mediated by protein kinase A N2 - The vacuolar H+-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary gland cells energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). We have shown previously that exposure to 5-HT induces a cAMP-mediated reversible assembly of V-0 and V-1 subcomplexes to V-ATPase holoenzymes and increases V-ATPase-driven proton transport. Here, we analyze whether the effect of cAMP on V-ATPase is mediated by protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac), the cAMP target proteins that are present within the salivary glands. Immunofluorescence microscopy shows that PKA activators, but not Epac activators, induce the translocation of V1 components from the cytoplasm to the apical membrane, indicative of an assembly of V-ATPase holoenzymes. Measurements of transepithelial voltage changes and microfluorometric pH measurements at the luminal surface of cells in isolated glands demonstrate further that PKA-activating cAMP analogs increase cation transport to the gland lumen and induce a V-ATPase-dependent luminal acidification, whereas activators of Epac do not. Inhibitors of PKA block the 5-HT-induced V-1 translocation to the apical membrane and the increase in proton transport. We conclude that cAMP exerts its effects on V-ATPase via PKA. KW - Vacuolar h+-atpase KW - camp binding-sites KW - cyclic-amp KW - plasma-membrane KW - drosophila-melanogaster Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-46126 ER - TY - JOUR A1 - Röser, Claudia A1 - Jordan, Nadine A1 - Balfanz, Sabine A1 - Baumann, Arnd A1 - Walz, Bernd A1 - Baumann, Otto A1 - Blenau, Wolfgang T1 - Molecular and pharmacological characterization of serotonin 5-HT2 alpha and 5-HT7 receptors in the salivary glands of the blowfly calliphora vicina JF - PLoS one N2 - Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca2+ and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2 alpha, Cv5-ht7) that share high similarity with mammalian 5-HT2 and 5-HT7 receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2 alpha-transfected mammalian cells with 5-HT elevates cytosolic [Ca2+] in a dose-dependent manner (EC50 = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC50 = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT2 alpha or Cv5-HT7 in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv(5)-HT2 alpha receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT7 receptor, and clozapine (1 mu M) antagonizes the effects of 5-HT via Cv5-HT7 in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca2+- and cAMP-signalling cascades. Citation: Roser C, Jordan N, Balfanz S, Baumann A, Walz B, et al. (2012) Molecular and Pharmacological Characterization of Serotonin 5-HT2a and 5-HT7 Receptors in the Salivary Glands of the Blowfly Calliphora vicina. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0049459 SN - 1932-6203 VL - 7 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Dames, Petra A1 - Schmidt, R. A1 - Walz, Bernd A1 - Baumann, Otto T1 - Regulation of vacuolar-type H+-ATPase (vATPase) in blowfly salivary glands Y1 - 2004 SN - 0171-9335 ER - TY - GEN A1 - Blenau, Wolfgang A1 - Rotte, Cathleen A1 - Witte, Jeannine A1 - Baumann, Otto A1 - Walz, Bernd T1 - Source, topography and excitatory effects of GABAergic innervation in cockroach salivary glands N2 - Cockroach salivary glands are innervated by dopaminergic and serotonergic neurons. Both transmitters elicit saliva secretion. We studied the distribution pattern of neurons containing gamma-aminobutyric acid ( GABA) and their physiological role. Immunofluorescence revealed a GABA-immunoreactive axon that originates within the subesophageal ganglion at the salivary neuron 2 (SN2) and this extends within the salivary duct nerve towards the salivary gland. GABA-positive fibers form a network on most acinar lobules and a dense plexus in the interior of a minor fraction of acinar lobules. Co-staining with anti-synapsin revealed that some putative GABAergic terminals seem to make pre-synaptic contacts with GABA-negative release sites. Many putative GABAergic release sites are at some distance from other synapses and at distance from the acinar tissue. Intracellular recordings from isolated salivary glands have revealed that GABA does not affect the basolateral membrane potential of the acinar cells directly. When applied during salivary duct nerve stimulation, GABA enhances the electrical response of the acinar cells and increases the rates of fluid and protein secretion. The effect on electrical cell responses is mimicked by the GABA(B) receptor agonists baclofen and SKF97541, and blocked by the GABAB receptor antagonists CGP52432 and CGP54626. These findings indicate that GABA has a modulatory role in the control of salivation, acting presynaptically on serotonergic and/or dopaminergic neurotransmission. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 111 KW - GABA KW - salivary gland KW - innervation KW - cockroach KW - Periplaneta americana Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44353 ER - TY - JOUR A1 - Voss, Martin A1 - Schmidt, Ruth A1 - Walz, Bernd A1 - Baumann, Otto T1 - Stimulus-induced translocation of the protein kinase A catalytic subunit to the apical membrane in blowfly salivary glands N2 - Secretion in blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT), which activates the InsP(3)/Ca2+ pathway and the cAMP/protein kinase A (PKA) pathway in the secretory cells. The latter signaling cascade induces the activation of a vacuolar H+-ATPase on the apical membrane. Here, we have determined the distribution of PKA by using antibodies against the PKA regulatory subunit-II (PKA-RII) and the PKA catalytic subunit (PKA-C) of Drosophila. PKA is present in high concentrations within the secretory cells. PKA-RII and PKA-C co-distribute in non-stimulated glands, being enriched in the basal portion of the secretory cells. Exposure to 8-CPT-cAMP or 5-HT induces the translocation of PKA-C to the apical membrane, whereas the PKA-RII distribution remains unchanged. The recruitment of PKA-C to the apical membrane corroborates our hypothesis that vacuolar H+-ATPase, which is enriched in this membrane domain, is a target protein for PKA. Y1 - 2009 UR - http://www.springerlink.com/content/100524 U6 - https://doi.org/10.1007/s00441-008-0673-x SN - 0302-766X ER - TY - JOUR A1 - Walz, Bernd A1 - Baumann, Otto T1 - Structure and cellular physiology of Ca2+ stores in invertebrate photoreceptors Y1 - 1995 ER - TY - JOUR A1 - Walz, Bernd A1 - Baumann, Otto A1 - Krach, Christian A1 - Baumann, Arnd A1 - Blenau, Wolfgang T1 - The aminergic control of cockroach salivary glands N2 - The acinar salivary glands of cockroaches receive a dual innervation from the subesophageal ganglion and the stomatogastric nervous system. Acinar cells are surrounded by a plexus of dopaminergic and serotonergic varicose fibers. In addition, seroton-ergic terminals lie deep in the extracellulor spaces between acinar cells. Excitation-secretion coupling in cockroach salivary glands is stimulated by both dopamine and serotonin. These monoamines cause increases in the intracellular concentrations of cAMP and Ca2+. Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, two elementary secretary processes, namely electrolyte/water secretion and protein secretion, are triggered by different aminergic transmitters. Because of its simplicity and experimental accessibility, cockroach salivary glands have been used extensively as a model system to study the cellular actions of biogenic amines and to examine the pharmacological properties of biogenic amine receptors. In this review, we summarize current knowledge concerning the aminergic control of cockroach salivary glands and discuss our efforts to characterize Periplaneta biogenic amine receptors molecularly Y1 - 2006 UR - 1960 = Doi 10.1002/Arch.20128 ER -