TY - JOUR A1 - Weiss, Jonathan R. A1 - Walters, Richard J. A1 - Morishita, Yu A1 - Wright, Tim J. A1 - Lazecky, Milan A1 - Wang, Hua A1 - Hussain, Ekbal A1 - Hooper, Andrew J. A1 - Elliott, John R. A1 - Rollins, Chris A1 - Yu, Chen A1 - Gonzalez, Pablo J. A1 - Spaans, Karsten A1 - Li, Zhenhong A1 - Parsons, Barry T1 - High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data JF - Geophysical research letters N2 - Measurements of present-day surface deformation are essential for the assessment of long-term seismic hazard. The European Space Agency's Sentinel-1 satellites enable global, high-resolution observation of crustal motion from Interferometric Synthetic Aperture Radar (InSAR). We have developed automated InSAR processing systems that exploit the first similar to 5 years of Sentinel-1 data to measure surface motions for the similar to 800,000-km(2) Anatolian region. Our new 3-D velocity and strain rate fields illuminate deformation patterns dominated by westward motion of Anatolia relative to Eurasia, localized strain accumulation along the North and East Anatolian Faults, and rapid vertical signals associated with anthropogenic activities and to a lesser extent extension across the grabens of western Anatolia. We show that automatically processed Sentinel-1 InSAR data can characterize details of the velocity and strain rate fields with high resolution and accuracy over large regions. These results are important for assessing the relationship between strain accumulation and release in earthquakes.
Plain Language Summary Satellite-based measurements of small rates of motion of the Earth's surface made at high spatial resolutions and over large areas are important for many geophysical applications including improving earthquake hazard models. We take advantage of recent advances in geodetic techniques in order to measure surface velocities and tectonic strain accumulation across the Anatolia region, including the highly seismogenic and often deadly North Anatolian Fault. We show that by combining Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) data with Global Navigation Satellite System (GNSS) measurements we can enhance our view of surface deformation associated with active tectonics, the earthquake cycle, and anthropogenic processes. Y1 - 2020 U6 - https://doi.org/10.1029/2020GL087376 SN - 0094-8276 SN - 1944-8007 VL - 47 IS - 17 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ou, Qi A1 - Daout, Simon A1 - Weiss, Jonathan R. A1 - Shen, Lin A1 - Lazecky, Milan A1 - Wright, Tim J. A1 - Parsons, Barry E. T1 - Large-Scale interseismic strain mapping of the NE Tibetan Plateau from Sentinel-1 Interferometry JF - Journal of geophysical research : Solid earth N2 - The launches of the Sentinel-1 synthetic aperture radar satellites in 2014 and 2016 started a new era of high-resolution velocity and strain rate mapping for the continents. However, multiple challenges exist in tying independently processed velocity data sets to a common reference frame and producing high-resolution strain rate fields. We analyze Sentinel-1 data acquired between 2014 and 2019 over the northeast Tibetan Plateau, and develop new methods to derive east and vertical velocities with similar to 100 m resolution and similar to 1 mm/yr accuracy across an area of 440,000 km(2). By implementing a new method of combining horizontal gradients of filtered east and interpolated north velocities, we derive the first similar to 1 km resolution strain rate field for this tectonically active region. The strain rate fields show concentrated shear strain along the Haiyuan and East Kunlun Faults, and local contractional strain on fault junctions, within the Qilianshan thrusts, and around the Longyangxia Reservoir. The Laohushan-Jingtai creeping section of the Haiyuan Fault is highlighted in our data set by extremely rapid strain rates. Strain across unknown portions of the Haiyuan Fault system, including shear on the eastern extension of the Dabanshan Fault and contraction at the western flank of the Quwushan, highlight unmapped tectonic structures. In addition to the uplift across most of the lowlands, the vertical velocities also contain climatic, hydrological or anthropogenic-related deformation signals. We demonstrate the enhanced view of large-scale active tectonic processes provided by high-resolution velocities and strain rates derived from Sentinel-1 data and highlight associated wide-ranging research applications. KW - Sentinel-1 InSAR KW - interseismic strain rate KW - creep and unmapped faults; KW - hydrological uplift and subsidence KW - tectonic geodesy KW - surface velocity KW - mapping Y1 - 2022 U6 - https://doi.org/10.1029/2022JB024176 SN - 2169-9313 SN - 2169-9356 VL - 127 IS - 6 PB - American Geophysical Union CY - Washington ER -