TY - JOUR A1 - Medeiros, Pedro Henrique Augusto A1 - de Araujo, Jose Carlos A1 - Mamede, George Leite A1 - Creutzfeldt, Benjamin A1 - Guentner, Andreas A1 - Bronstert, Axel T1 - Connectivity of sediment transport in a semiarid environment: a synthesis for the Upper Jaguaribe Basin, Brazil JF - Journal of soils and sediments : protection, risk assessment and remediation N2 - Hydrosedimentological studies conducted in the semiarid Upper Jaguaribe Basin, Brazil, enabled the identification of the key processes controlling sediment connectivity at different spatial scales (10(0)-10(4) km(2)). Water and sediment fluxes were assessed from discharge, sediment concentrations and reservoir siltation measurements. Additionally, mathematical modelling (WASA-SED model) was used to quantify water and sediment transfer within the watershed. Rainfall erosivity in the study area was moderate (4600 MJ mm ha(-1) h(-1) year(-1)), whereas runoff depths (16-60 mm year(-1)), and therefore the sediment transport capacity, were low. Consequently, similar to 60 % of the eroded sediment was deposited along the landscape, regardless of the spatial scale. The existing high-density reservoir network (contributing area of 6 km(2) per reservoir) also limits sediment propagation, retaining up to 47 % of the sediment at the large basin scale. The sediment delivery ratio (SDR) decreased with the spatial scale; on average, 41 % of the eroded sediment was yielded from the hillslopes, while for the whole 24,600-km(2) basin, the SDR was reduced to 1 % downstream of a large reservoir (1940-hm(3) capacity). Hydrological behaviour in the Upper Jaguaribe Basin represents a constraint on sediment propagation; low runoff depth is the main feature breaking sediment connectivity, which limits sediment transference from the hillslopes to the drainage system. Surface reservoirs are also important barriers, but their relative importance to sediment retention increases with scale, since larger contributing areas are more suitable for the construction of dams due to higher hydrological potential. KW - Brazil KW - Connectivity KW - Sediment redistribution KW - Semiarid KW - Spatial scale Y1 - 2014 U6 - https://doi.org/10.1007/s11368-014-0988-z SN - 1439-0108 SN - 1614-7480 VL - 14 IS - 12 SP - 1938 EP - 1948 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Pilz, Tobias A1 - Delgado, José Miguel Martins A1 - Voss, Sebastian A1 - Vormoor, Klaus Josef A1 - Francke, Till A1 - Cunha Costa, Alexandre A1 - Martins, Eduardo A1 - Bronstert, Axel T1 - Seasonal drought prediction for semiarid northeast Brazil BT - what is the added value of a process-based hydrological model? JF - Hydrology and Earth System Sciences N2 - The semiarid northeast of Brazil is one of the most densely populated dryland regions in the world and recurrently affected by severe droughts. Thus, reliable seasonal forecasts of streamflow and reservoir storage are of high value for water managers. Such forecasts can be generated by applying either hydrological models representing underlying processes or statistical relationships exploiting correlations among meteorological and hydrological variables. This work evaluates and compares the performances of seasonal reservoir storage forecasts derived by a process-based hydrological model and a statistical approach. Driven by observations, both models achieve similar simulation accuracies. In a hindcast experiment, however, the accuracy of estimating regional reservoir storages was considerably lower using the process-based hydrological model, whereas the resolution and reliability of drought event predictions were similar by both approaches. Further investigations regarding the deficiencies of the process-based model revealed a significant influence of antecedent wetness conditions and a higher sensitivity of model prediction performance to rainfall forecast quality. Within the scope of this study, the statistical model proved to be the more straightforward approach for predictions of reservoir level and drought events at regionally and monthly aggregated scales. However, for forecasts at finer scales of space and time or for the investigation of underlying processes, the costly initialisation and application of a process-based model can be worthwhile. Furthermore, the application of innovative data products, such as remote sensing data, and operational model correction methods, like data assimilation, may allow for an enhanced exploitation of the advanced capabilities of process-based hydrological models. KW - Water Availability KW - Uncertainty Processor KW - Forecasting Framework KW - Sediment Transport KW - Reservoir Networks KW - Jaguaribe Basin KW - Climate KW - Precipitation KW - Nordeste KW - Connectivity Y1 - 2019 U6 - https://doi.org/10.5194/hess-23-1951-2019 SN - 1027-5606 SN - 1607-7938 VL - 23 SP - 1951 EP - 1971 PB - Copernicus Publications CY - Göttingen ER - TY - GEN A1 - Pilz, Tobias A1 - Delgado, José Miguel Martins A1 - Voss, Sebastian A1 - Vormoor, Klaus Josef A1 - Francke, Till A1 - Cunha Costa, Alexandre A1 - Martins, Eduardo A1 - Bronstert, Axel T1 - Seasonal drought prediction for semiarid northeast Brazil BT - what is the added value of a process-based hydrological model? T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The semiarid northeast of Brazil is one of the most densely populated dryland regions in the world and recurrently affected by severe droughts. Thus, reliable seasonal forecasts of streamflow and reservoir storage are of high value for water managers. Such forecasts can be generated by applying either hydrological models representing underlying processes or statistical relationships exploiting correlations among meteorological and hydrological variables. This work evaluates and compares the performances of seasonal reservoir storage forecasts derived by a process-based hydrological model and a statistical approach. Driven by observations, both models achieve similar simulation accuracies. In a hindcast experiment, however, the accuracy of estimating regional reservoir storages was considerably lower using the process-based hydrological model, whereas the resolution and reliability of drought event predictions were similar by both approaches. Further investigations regarding the deficiencies of the process-based model revealed a significant influence of antecedent wetness conditions and a higher sensitivity of model prediction performance to rainfall forecast quality. Within the scope of this study, the statistical model proved to be the more straightforward approach for predictions of reservoir level and drought events at regionally and monthly aggregated scales. However, for forecasts at finer scales of space and time or for the investigation of underlying processes, the costly initialisation and application of a process-based model can be worthwhile. Furthermore, the application of innovative data products, such as remote sensing data, and operational model correction methods, like data assimilation, may allow for an enhanced exploitation of the advanced capabilities of process-based hydrological models. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 702 KW - Water Availability KW - Uncertainty Processor KW - Forecasting Framework KW - Sediment Transport KW - Reservoir Networks KW - Jaguaribe Basin KW - Climate KW - Precipitation KW - Nordeste KW - Connectivity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427950 SN - 1866-8372 IS - 702 ER - TY - JOUR A1 - Bronstert, Axel A1 - de Araujo, Jose-Carlos A1 - Batalla Villanueva, Ramon J. A1 - Costa, Alexandre Cunha A1 - Delgado, José Miguel Martins A1 - Francke, Till A1 - Förster, Saskia A1 - Guentner, Andreas A1 - Lopez-Tarazon, José Andrés A1 - Mamede, George Leite A1 - Medeiros, Pedro Henrique Augusto A1 - Mueller, Eva A1 - Vericat, Damia T1 - Process-based modelling of erosion, sediment transport and reservoir siltation in mesoscale semi-arid catchments JF - Journal of soils and sediments : protection, risk assessment and remediation N2 - To support scientifically sound water management in dryland environments a modelling system has been developed for the quantitative assessment of water and sediment fluxes in catchments, transport in the river system, and retention in reservoirs. The spatial scale of interest is the mesoscale because this is the scale most relevant for management of water and land resources. This modelling system comprises process-oriented hydrological components tailored for dryland characteristics coupled with components comprising hillslope erosion, sediment transport and reservoir deposition processes. The spatial discretization is hierarchically designed according to a multi-scale concept to account for particular relevant process scales. The non-linear and partly intermittent run-off generation and sediment dynamics are dealt with by accounting for connectivity phenomena at the intersections of landscape compartments. The modelling system has been developed by means of data from nested research catchments in NE-Spain and in NE-Brazil. In the semi-arid NE of Brazil sediment retention along the topography is the main process for sediment retention at all scales, i.e. the sediment delivery is transport limited. This kind of deposition retains roughly 50 to 60 % of eroded sediment, maintaining a similar deposition proportion in all spatial scales investigated. On the other hand, the sediment retained in reservoirs is clearly related to the scale, increasing with catchment area. With increasing area, there are more reservoirs, increasing the possibility of deposition. Furthermore, the area increase also promotes an increase in flow volume, favouring the construction of larger reservoirs, which generally overflow less frequently and retain higher sediment fractions. The second example comprises a highly dynamic Mediterranean catchment in NE-Spain with nested sub-catchments and reveals the full dynamics of hydrological, erosion and deposition features. The run-off modelling performed well with only some overestimation during low-flow periods due to the neglect of water losses along the river. The simulated peaks in sediment flux are reproduced well, while low-flow sediment transport is less well captured, due to the disregard of sediment remobilization in the riverbed during low flow. This combined observation and modelling study deepened the understanding of hydro-sedimentological systems characterized by flashy run-off generation and by erosion and sediment transport pulses through the different landscape compartments. The connectivity between the different landscape compartments plays a very relevant role, regarding both the total mass of water and sediment transport and the transport time through the catchment. KW - Connectivity KW - Deposition KW - Erosion KW - Modelling KW - Sediment transfer KW - Semi-arid Y1 - 2014 U6 - https://doi.org/10.1007/s11368-014-0994-1 SN - 1439-0108 SN - 1614-7480 VL - 14 IS - 12 SP - 2001 EP - 2018 PB - Springer CY - Heidelberg ER -