TY - JOUR A1 - Thirumalaikumar, Venkatesh P. A1 - Gorka, Michal A1 - Schulz, Karina A1 - Masclaux-Daubresse, Celine A1 - Sampathkumar, Arun A1 - Skirycz, Aleksandra A1 - Vierstra, Richard D. A1 - Balazadeh, Salma T1 - Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1 JF - Autophagy N2 - In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS inArabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of annbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression ofHSPgenes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation ofNBR1resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS. KW - Arabidopsis thaliana KW - heat stress KW - HSFA2 KW - HSP90.1 KW - NBR1 KW - ROF1 KW - selective autophagy KW - stress memory KW - stress recovery Y1 - 2020 U6 - https://doi.org/10.1080/15548627.2020.1820778 SN - 1554-8635 VL - 17 IS - 9 SP - 2184 EP - 2199 PB - Taylor & Francis CY - Abingdon ER - TY - JOUR A1 - Janowski, Marcin Andrzej A1 - Zoschke, Reimo A1 - Scharff, Lars B. A1 - Jaime, Silvia Martinez A1 - Ferrari, Camilla A1 - Proost, Sebastian A1 - Xiong, Jonathan Ng Wei A1 - Omranian, Nooshin A1 - Musialak-Lange, Magdalena A1 - Nikoloski, Zoran A1 - Graf, Alexander A1 - Schoettler, Mark Aurel A1 - Sampathkumar, Arun A1 - Vaid, Neha A1 - Mutwil, Marek T1 - AtRsgA from Arabidopsis thaliana is important for maturation of the small subunit of the chloroplast ribosome JF - The plant journal N2 - Plastid ribosomes are very similar in structure and function to the ribosomes of their bacterial ancestors. Since ribosome biogenesis is not thermodynamically favorable under biological conditions it requires the activity of many assembly factors. Here we have characterized a homolog of bacterial RsgA in Arabidopsis thaliana and show that it can complement the bacterial homolog. Functional characterization of a strong mutant in Arabidopsis revealed that the protein is essential for plant viability, while a weak mutant produced dwarf, chlorotic plants that incorporated immature pre-16S ribosomal RNA into translating ribosomes. Physiological analysis of the mutant plants revealed smaller, but more numerous, chloroplasts in the mesophyll cells, reduction of chlorophyll a and b, depletion of proplastids from the rib meristem and decreased photosynthetic electron transport rate and efficiency. Comparative RNA sequencing and proteomic analysis of the weak mutant and wild-type plants revealed that various biotic stress-related, transcriptional regulation and post-transcriptional modification pathways were repressed in the mutant. Intriguingly, while nuclear- and chloroplast-encoded photosynthesis-related proteins were less abundant in the mutant, the corresponding transcripts were increased, suggesting an elaborate compensatory mechanism, potentially via differentially active retrograde signaling pathways. To conclude, this study reveals a chloroplast ribosome assembly factor and outlines the transcriptomic and proteomic responses of the compensatory mechanism activated during decreased chloroplast function. Significance Statement AtRsgA is an assembly factor necessary for maturation of the small subunit of the chloroplast ribosome. Depletion of AtRsgA leads to dwarfed, chlorotic plants, a decrease of mature 16S rRNA and smaller, but more numerous, chloroplasts. Large-scale transcriptomic and proteomic analysis revealed that chloroplast-encoded and -targeted proteins were less abundant, while the corresponding transcripts were increased in the mutant. We analyze the transcriptional responses of several retrograde signaling pathways to suggest the mechanism underlying this compensatory response. KW - ribosome assembly KW - chloroplast ribosome KW - assembly factor KW - 30S subunit KW - RsgA KW - Arabidopsis thaliana Y1 - 2018 U6 - https://doi.org/10.1111/tpj.14040 SN - 0960-7412 SN - 1365-313X VL - 96 IS - 2 SP - 404 EP - 420 PB - Wiley CY - Hoboken ER -