TY - THES A1 - Hoffmann-Rothe, Arne T1 - Combined structural and magnetotelluric investigation across the West Fault Zone in northern Chile N2 - Untersuchungen zur internen Architektur von großen Störungszonen beschränken sich üblicherweise auf die, an der Erdoberfläche aufgeschlossene, störungsbezogene Deformation. Eine Methode, die es ermöglicht, Informationen über die Tiefenfortsetzung einer Störung zu erhalten, ist die Abbildung der elektrischen Leitfähigkeit des Untergrundes. Die vorliegende Arbeit beschäftigt sich mit der kombinierten strukturgeologischen und magnetotellurischen Untersuchung eines Segmentes der 'West Fault'-Störung in den nordchilenischen Anden. Die West Fault ist ein Abschnitt des über 2000 km langen Präkordilleren-Störungssystem, welches im Zusammenhang mit der Subduktion vor der südamerikanischen Westküste entstanden ist. Die Aktivität dieses Störungssystems reichte vom Eozän bis in das Quartär. Der Verlauf der West Fault ist im Untersuchungsgebiet (22°04'S, 68°53'W) an der Oberfläche klar definiert und weist über viele zehner Kilometer eine konstante Streichrichtung auf. Die Aufschlussbedingungen und die Morphologie des Arbeitsgebietes sind ideal für kombinierte Untersuchungen der störungsbezogenen Deformation und der elektrischen Leitfähigkeit des Untergrundes mit Hilfe magnetotellurischer Experimente (MT) und der erdmagnetischen Tiefensondierung (GDS). Ziel der Untersuchungen war es, eine mögliche Korrelation der beiden Meßmethoden herauszuarbeiten, und die interne Störungsarchitektur der West Fault umfassend zu beschreiben. Die Interpretation von Sprödbruch-Strukturen (kleinmaßstäbliche Störungen sowie Störungsflächen mit/ohne Bewegungslineationen) im Untersuchungsgebiet weist auf überwiegend seitenverschiebende Deformation entlang von subvertikal orientierten Scherflächen hin. Dextrale und sinistrale Bewegungsrichtungen können innerhalb der Störungszone bestätigt werden, was auf Reaktivierungen des Störungssystems schliessen läßt. Die jüngsten Deformationen im Arbeitsgebiet haben dehnenden Charakter, wobei die kinematische Analyse eine unterschiedliche Orientierung der Extensionsrichtung beiderseits der Störung andeutet. Die Bruchflächendichte nimmt mit Annäherung an die Störung zu und zeichnet einen etwa 1000 m breiten Bereich erhöhter Deformationsintensität um die Störungsspur aus (damage zone). Im Zentrum dieser Zone weist das Gestein eine intensive Alteration und Brekzierung auf, die sich über eine Breite von etwa 400 m erstreckt. Kleine Störungen und Scherflächen in diesem zentralen Abschnitt der Störung fallen überwiegend steil nach Osten ein (70-80°). Innerhalb desselben Arbeitsgebietes wurde ein 4 km langes MT/GDS Profil vermessen, welches senkrecht zum Streichen der West Fault verläuft. Für die zentralen 2 km dieses Hauptprofils beträgt der Abstand der Meßstationen jeweils 100 m. Ein weiteres Profil, bestehend aus 9 Stationen mit einem Abstand von 300 m zueinander, quert die Störung einige Kilometer entfernt vom eigentlichen Arbeitsgebiet. Die Aufzeichnung der Daten erfolgte mit vier S.P.A.M MkIII Apparaturen in einem Frequenzbereich von 1000 Hz bis 0.001 Hz. In den GDS Daten beider Profile ist die Störung für Frequenzen >1 Hz deutlich abgebildet: Die Induktionspfeile kennzeichnen eine mehrere hundert Meter breite Zone erhöhter Leitfähigkeit, welche sich entlang der West Fault erstreckt. Die Dimensionalitätsanalyse der MT Daten rechtfertigt die Anpassung der gemessenen Daten mit einem zwei-dimensionalen Modell für einen Frequenzbereich von 1000 Hz bis 0.1 Hz. In diesem Frequenzbereich, der eine Auflösung der Leitfähigkeitsstruktur bis mindestens 5 km Tiefe ermöglicht, läßt sich eine regionale geoelektrische Streichrichtung parallel zum Verlauf der West Fault nachweisen. Die Modellierung der MT Daten beruht auf einem Inversionsalgorithmus von Mackie et al. (1997). Leitfähigkeitsanomalien, die sich aus der Inversions-Modellierung ergeben, werden anhand von empirischen Sensitivitätsstudien auf ihre Robustheit überprüft. Dabei werden die Eigenschaften (Geometrie, Leitfähigkeit) der Strukturen systematisch variiert und sowohl Vorwärts- als auch Inversionsrechnungen der modifizierten Modelle durchgeführt. Die jeweiligen Modellergebnisse werden auf ihre Konsistenz mit dem Ausgangsdatensatz überprüft. Entlang beider MT Profile wird ein guter elektrischer Leiter im zentralen Abschnitt der West Fault aufgelöst, wobei die Bereiche erhöhter Leitfähigkeit östlich der Störungsspur liegen. Für das dicht vermessene MT Profil ergibt sich eine Breite des Störungsleiters von etwa 300 m sowie ein steiles Einfallen der Anomalie nach Osten (70°). Der Störungsleiter reicht bis in eine Tiefe von mindestens 1100 m, während die Modellierungsstudien auf eine maximale Tiefenerstreckung <2000 m hinweisen. Das Profil zeigt weitere leitfähige Anomalien, deren Geometrie aber weniger genau aufgelöst ist. Die Störungsleiter der beiden MT Profile stimmen in ihrer Position mit der Alterationszone überein. Im zentralen Bereich des Hauptprofils korreliert darüber hinaus das Einfallen der Sprödbruch-Strukturen und der Leitfähigkeitsanomalie. Dies weist darauf hin, daß die Erhöhung der Leitfähigkeit im Zusammenhang mit einem Netzwerk von Bruchstrukturen steht, welches mögliche Wegsamkeiten für Fluide bietet. Der miteinander in Verbindung stehende Gesteins-Porenraum, der benötigt wird, um die gemessene Erhöhung der Leitfähigkeit durch Fluide im Gestein zu erklären, kann anhand der Salinität einiger Grundwasserproben abgeschätzt werden (Archies Gesetz). Wasserproben aus größerer Tiefe, weisen aufgrund intensiverer Fluid-Gesteins-Wechselwirkung eine höhere Salinität, und damit eine verbesserte Leitfähigkeit, auf. Für eine Probe aus einer Tiefe von 200 m ergibt sich demnach eine benötigte Porosität im Bereich von 0.8% - 4%. Dies legt nahe, daß Wässer, die von der Oberfläche in die Bruchzone der Störung eindringen, ausreichen, um die beobachtete Leitfähigkeitserhöhung zu erklären. Diese Deutung wird von der geochemischen Signatur von Gesteinsproben aus dem Alterationsbereich bestätigt, wonach die Alteration in einem Regime niedriger Temperatur (<95°C) stattfand. Der Einfluß von aufsteigenden Tiefenwässern wurde hier nicht nachgewiesen. Die geringe Tiefenerstreckung des Störungsleiters geht wahrscheinlich auf Verheilungs- und Zementationsprozesse der Bruchstrukturen zurück, die aufgrund der Lösung und Fällung von Mineralen in größerer Tiefe, und damit bei erhöhter Temperatur, aktiv sind. Der Vergleich der Untersuchungsergebnisse der zur Zeit seismisch inaktiven West Fault mit veröffentlichten Studien zur elektrischen Leitfähigkeitsstruktur der aktiven San Andreas Störung, deutet darauf hin, daß die Tiefenerstreckung und die Leitfähigkeit von Störungsleitern eine Funktion der Störungsaktivität ist. Befindet sich eine Störung in einem Stadium der Deformation, so bleibt das Bruchnetzwerk für Fluide permeabel und verhindert die Versiegelung desselben. N2 - The characterisation of the internal architecture of large-scale fault zones is usually restricted to the outcrop-based investigation of fault-related structural damage on the Earth's surface. A method to obtain information on the downward continuation of a fault is to image the subsurface electrical conductivity structure. This work deals with such a combined investigation of a segment of the West Fault, which itself is a part of the more than 2000 km long trench-linked Precordilleran Fault System in the northern Chilean Andes. Activity on the fault system lasted from Eocene to Quaternary times. In the working area (22°04'S, 68°53'W), the West Fault exhibits a clearly defined surface trace with a constant strike over many tens of kilometers. Outcrop condition and morphology of the study area allow ideally for a combination of structural geology investigation and magnetotelluric (MT) / geomagnetic depth sounding (GDS) experiments. The aim was to achieve an understanding of the correlation of the two methods and to obtain a comprehensive view of the West Fault's internal architecture. Fault-related brittle damage elements (minor faults and slip-surfaces with or without striation) record prevalent strike-slip deformation on subvertically oriented shear planes. Dextral and sinistral slip events occurred within the fault zone and indicate reactivation of the fault system. Youngest deformation increments mapped in the working area are extensional and the findings suggest a different orientation of the extension axes on either side of the fault. Damage element density increases with approach to the fault trace and marks an approximately 1000 m wide damage zone around the fault. A region of profound alteration and comminution of rocks, about 400 m wide, is centered in the damage zone. Damage elements in this central part are predominantly dipping steeply towards the east (70-80°). Within the same study area, the electrical conductivity image of the subsurface was measured along a 4 km long MT/GDS profile. This main profile trends perpendicular to the West Fault trace. The MT stations of the central 2 km were 100 m apart from each other. A second profile with 300 m site spacing and 9 recording sites crosses the fault a few kilometers away from the main study area. Data were recorded in the frequency range from 1000 Hz to 0.001 Hz with four real time instruments S.P.A.M. MkIII. The GDS data reveal the fault zone for both profiles at frequencies above 1 Hz. Induction arrows indicate a zone of enhanced conductivity several hundred meters wide, that aligns along the WF strike and lies mainly on the eastern side of the surface trace. A dimensionality analysis of the MT data justifies a two dimensional model approximation of the data for the frequency range from 1000 Hz to 0.1 Hz. For this frequency range a regional geoelectric strike parallel to the West Fault trace could be recovered. The data subset allows for a resolution of the conductivity structure of the uppermost crust down to at least 5 km. Modelling of the MT data is based on an inversion algorithm developed by Mackie et al. (1997). The features of the resulting resistivity models are tested for their robustness using empirical sensitivity studies. This involves variation of the properties (geometry, conductivity) of the anomalies, the subsequent calculation of forward or constrained inversion models and check for consistency of the obtained model results with the data. A fault zone conductor is resolved on both MT profiles. The zones of enhanced conductivity are located to the east of the West Fault surface trace. On the dense MT profile, the conductive zone is confined to a width of about 300 m and the anomaly exhibits a steep dip towards the east (about 70°). Modelling implies that the conductivity increase reaches to a depth of at least 1100 m and indicates a depth extent of less than 2000 m. Further conductive features are imaged but their geometry is less well constrained. The fault zone conductors of both MT profiles coincide in position with the alteration zone. For the dense profile, the dip of the conductive anomaly and the dip of the damage elements of the central part of the fault zone correlate. This suggests that the electrical conductivity enhancement is causally related to a mesh of minor faults and fractures, which is a likely pathway for fluids. The interconnected rock-porosity that is necessary to explain the observed conductivity enhancement by means of fluids is estimated on the basis of the salinity of several ground water samples (Archie's Law). The deeper the source of the water sample, the more saline it is due to longer exposure to fluid-rock interaction and the lower is the fluid's resistivity. A rock porosity in the range of 0.8% - 4% would be required at a depth of 200 m. That indicates that fluids penetrating the damaged fault zone from close to the surface are sufficient to explain the conductivity anomalies. This is as well supported by the preserved geochemical signature of rock samples in the alteration zone. Late stage alteration processes were active in a low temperature regime (<95°C) and the involvement of ascending brines from greater depth is not indicated. The limited depth extent of the fault zone conductors is a likely result of sealing and cementation of the fault fracture mesh due to dissolution and precipitation of minerals at greater depth and increased temperature. Comparison of the results of the apparently inactive West Fault with published studies on the electrical conductivity structure of the currently active San Andreas Fault, suggests that the depth extent and conductivity of the fault zone conductor may be correlated to fault activity. Ongoing deformation will keep the fault/fracture mesh permeable for fluids and impede cementation and sealing of fluid pathways. KW - Anden / Störung / Strukturgeologie / Magnetotellurik / Chile KW - Magnetotellurik KW - Seitenverschiebung KW - Anden KW - West Fault Zone KW - Störungsbau KW - elektrische Leitfähigkeit KW - Magnetotelluric KW - Strike-slip fault KW - Andes KW - West Fault Zone KW - Fault architecture KW - electrical conductivity Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000569 ER - TY - JOUR A1 - Weber, Michael H. A1 - Abu-Ayyash, Khalil A1 - Abueladas, Abdel-Rahman A1 - Agnon, Amotz A1 - Alasonati-Tašárová, Zuzana A1 - Al-Zubi, Hashim A1 - Babeyko, Andrey A1 - Bartov, Yuval A1 - Bauer, Klaus A1 - Becken, Michael A1 - Bedrosian, Paul A. A1 - Ben-Avraham, Zvi A1 - Bock, Günter A1 - Bohnhoff, Marco A1 - Bribach, Jens A1 - Dulski, Peter A1 - Ebbing, Joerg A1 - El-Kelani, Radwan J. A1 - Foerster, Andrea A1 - Förster, Hans-Jürgen A1 - Frieslander, Uri A1 - Garfunkel, Zvi A1 - Götze, Hans-Jürgen A1 - Haak, Volker A1 - Haberland, Christian A1 - Hassouneh, Mohammed A1 - Helwig, Stefan L. A1 - Hofstetter, Alfons A1 - Hoffmann-Rothe, Arne A1 - Jaeckel, Karl-Heinz A1 - Janssen, Christoph A1 - Jaser, Darweesh A1 - Kesten, Dagmar A1 - Khatib, Mohammed Ghiath A1 - Kind, Rainer A1 - Koch, Olaf A1 - Koulakov, Ivan A1 - Laske, Maria Gabi A1 - Maercklin, Nils T1 - Anatomy of the Dead Sea transform from lithospheric to microscopic scale N2 - Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of left-lateral transform motion between the African and Arabian plates since early Miocene (similar to 20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the mu m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5-20 m wide at this depth range. Sixth, two areas on the AF show mesoscale to microscale faulting and veining in limestone sequences with faulting depths between 2 and 5 km. Seventh, fluids in the AF are carried downward into the fault zone. Only a minor fraction of fluids is derived from ascending hydrothermal fluids. However, we found that on the kilometer scale the AF does not act as an important fluid conduit. Most of these findings are corroborated using thermomechanical modeling where shear deformation in the upper crust is localized in one or two major faults; at larger depth, shear deformation occurs in a 20-40 km wide zone with a mechanically weak decoupling zone extending subvertically through the entire lithosphere. Y1 - 2009 UR - http://www.agu.org/journals/rg/ U6 - https://doi.org/10.1029/2008rg000264 SN - 8755-1209 ER -