TY - JOUR A1 - Creighton, Andrea L. A1 - Parsekian, Andrew D. A1 - Angelopoulos, Michael A1 - Jones, Benjamin M. A1 - Bondurant, A. A1 - Engram, M. A1 - Lenz, Josefine A1 - Overduin, Pier Paul A1 - Grosse, Guido A1 - Babcock, E. A1 - Arp, Christopher D. T1 - Transient Electromagnetic Surveys for the Determination of Talik Depth and Geometry Beneath Thermokarst Lakes JF - Journal of geophysical research : Solid earth N2 - Thermokarst lakes are prevalent in Arctic coastal lowland regions and sublake permafrost degradation and talik development contributes to greenhouse gas emissions by tapping the large permafrost carbon pool. Whereas lateral thermokarst lake expansion is readily apparent through remote sensing and shoreline measurements, sublake thawed sediment conditions and talik growth are difficult to measure. Here we combine transient electromagnetic surveys with thermal modeling, backed up by measured permafrost properties and radiocarbon ages, to reveal closed-talik geometry associated with a thermokarst lake in continuous permafrost. To improve access to talik geometry data, we conducted surveys along three transient electromagnetic transects perpendicular to lakeshores with different decadal-scale expansion rates of 0.16, 0.38, and 0.58m/year. We modeled thermal development of the talik using boundary conditions based on field data from the lake, surrounding permafrost and a borehole, independent of the transient electromagnetics. A talik depth of 91m was determined from analysis of the transient electromagnetic surveys. Using a lake initiation age of 1400years before present and available subsurface properties the results from thermal modeling of the lake center arrived at a best estimate talk depth of 80m, which is on the same order of magnitude as the results from the transient electromagnetic survey. Our approach has provided a noninvasive estimate of talik geometry suitable for comparable settings throughout circum-Arctic coastal lowland regions. KW - geophysics KW - permafrost KW - thermokarst KW - electromagnetic KW - lake Y1 - 2018 U6 - https://doi.org/10.1029/2018JB016121 SN - 2169-9313 SN - 2169-9356 VL - 123 IS - 11 SP - 9310 EP - 9323 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Jones, Benjamin M. A1 - Arp, Christopher D. A1 - Grosse, Guido A1 - Nitze, Ingmar A1 - Lara, Mark J. A1 - Whitman, Matthew S. A1 - Farquharson, Louise M. A1 - Kanevskiy, Mikhail A1 - Parsekian, Andrew D. A1 - Breen, Amy L. A1 - Ohara, Nori A1 - Rangel, Rodrigo Correa A1 - Hinkel, Kenneth M. T1 - Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska JF - Permafrost and Periglacial Processes N2 - Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25% of area) or completely drained during the 62-year period. Decadal-scale lake drainage rates progressively declined from 2.0 lakes/yr (1955-1975), to 1.6 lakes/yr (1975-2000), and to 1.2 lakes/yr (2000-2017) in the ~30,000-km(2) study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5-m-resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries. KW - Arctic lakes KW - drained lake basins KW - lake drainage KW - permafrost regions KW - thermokarst lakes Y1 - 2020 U6 - https://doi.org/10.1002/ppp.2038 VL - 31 IS - 1 SP - 110 EP - 127 PB - Wiley CY - New York ER - TY - GEN A1 - Jones, Benjamin M. A1 - Arp, Christopher D. A1 - Grosse, Guido A1 - Nitze, Ingmar A1 - Lara, Mark J. A1 - Whitman, Matthew S. A1 - Farquharson, Louise M. A1 - Kanevskiy, Mikhail A1 - Parsekian, Andrew D. A1 - Breen, Amy L. A1 - Ohara, Nori A1 - Rangel, Rodrigo Correa A1 - Hinkel, Kenneth M. T1 - Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25% of area) or completely drained during the 62-year period. Decadal-scale lake drainage rates progressively declined from 2.0 lakes/yr (1955-1975), to 1.6 lakes/yr (1975-2000), and to 1.2 lakes/yr (2000-2017) in the ~30,000-km(2) study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5-m-resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1376 KW - Arctic lakes KW - drained lake basins KW - lake drainage KW - permafrost regions KW - thermokarst lakes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-610435 SN - 1866-8372 IS - 1 ER -