TY - JOUR A1 - Draude, F. A1 - Galla, S. A1 - Pelster, Axel A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Haase, Alfred A1 - Mantion, Alexandre A1 - Thuenemann, Andreas F. A1 - Taubert, Andreas A1 - Luch, A. A1 - Arlinghaus, H. F. T1 - ToF-SIMS and Laser-SNMS analysis of macrophages after exposure to silver nanoparticles JF - Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films N2 - Silver nanoparticles (SNPs) are among the most commercialized nanoparticles because of their antibacterial effects. Besides being employed, e. g. as a coatingmaterial for sterile surfaces in household articles and appliances, the particles are also used in a broad range of medical applications. Their antibacterial properties make SNPs especially useful for wound disinfection or as a coating material for prostheses and surgical instruments. Because of their optical characteristics, the particles are of increasing interest in biodetection as well. Despite the widespread use of SNPs, there is little knowledge of their toxicity. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (Laser-SNMS) were used to investigate the effects of SNPs on human macrophages derived from THP-1 cells in vitro. For this purpose, macrophages were exposed to SNPs. The SNP concentration ranges were chosen with regard to functional impairments of the macrophages. To optimize the analysis of the macrophages, a special silicon wafer sandwich preparation technique was employed; ToF-SIMS was employed to characterize fragments originating from macrophage cell membranes. With the use of this optimized sample preparation method, the SNP-exposed macrophages were analyzed with ToF-SIMS and with Laser-SNMS. With Laser-SNMS, the three-dimensional distribution of SNPs in cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. We found an accumulation of SNPs directly beneath the cell membrane in a nanoparticular state as well as agglomerations of SNPs inside the cells. KW - Laser-SNMS KW - ToF-SIMS KW - life sciences KW - imaging KW - nanoparticles KW - three-dimensional depth profiling Y1 - 2013 U6 - https://doi.org/10.1002/sia.4902 SN - 0142-2421 VL - 45 IS - 1 SP - 286 EP - 289 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Tentschert, Jutta A1 - Jungnickel, Harald A1 - Reichardt, Philipp A1 - Leube, Peter A1 - Kretzschmar, Bernd A1 - Taubert, Andreas A1 - Luch, A. T1 - Identification of nano clay in composite polymers JF - Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films N2 - Industrialized food production is in urgent search for alternative packaging materials, which can serve the requirements of a globalized world in terms of longer product shelf lives, reduced freight weight to decrease transport costs, and better barrier functionality to preserve its freshness. Polymer materials containing organically modified nano clay particles as additives are one example for a new generation of packaging materials with specific barrier functionality to actually hit the market. Clay types used for these applications are aluminosilicates, which belong to the mineral group of phyllosilicates. These consist of nano-scaled thin platelets, which are organically modified with quaternary ammonium compounds acting as spacers between the different clay layers, thereby increasing the hydrophobicity of the mineral additive. A variety of different organically modified clays are already available, and the use as additive for food packaging materials is one important application. To ensure valid risk assessments of emerging nano composite polymers used in the food packaging industry, exact analytical characterization of the organically modified clay within the polymer matrix is of paramount importance. Time-of-flight SIMS in combination with multivariate statistical analysis was used to differentiate modified clay reference materials from another. Time-of-flight SIMS spectra of a reference polymer plate, which contained one specific nano clay composite, were acquired. For each modified clay additive, a set of characteristic diagnostic ions could be identified, which then was used to successfully assign unknown clay additives to the corresponding reference material. Thus, the described methodology could be used to define and characterize nano clay within polymer matrices. Copyright (c) 2014 John Wiley & Sons, Ltd. KW - ToF-SIMS KW - nanoparticles KW - nano clay KW - polymer KW - food contact material Y1 - 2014 U6 - https://doi.org/10.1002/sia.5546 SN - 0142-2421 SN - 1096-9918 VL - 46 SP - 334 EP - 336 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Taubert, Andreas A1 - Stange, Franziska A1 - Li, Zhonghao A1 - Junginger, Mathias A1 - Günter, Christina A1 - Neumann, Mike A1 - Friedrich, Alwin T1 - CuO nanoparticles from the Strongly Hydrated Ionic Liquid Precursor (ILP) Tetrabutylammonium Hydroxide evaluation of the Ethanol Sensing Activity JF - ACS applied materials & interfaces N2 - The sensing potential of CuO nanoparticles synthesized via. precipitation from a water/ionic liquid precursor (ILP) mixture was investigated. The particles have a moderate surface area of 66 m(2)/g after synthesis, which decreases upon thermal treatment to below 5 m(2)/g. Transmission electron microscopy confirms crystal growth upon annealing, likely due to sintering effects. The as-synthesized particles can be used for ethanol sensing. The respective sensors show fast response and recovery times of below 10 s and responses greater than 2.3 at 100 ppm of ethanol at 200 degrees C, which is higher than any CuO-based ethanol sensor described so far. KW - ionic liquids KW - ionic liquid precursors KW - tetrabutylammonium hydroxide KW - nanoparticles KW - CuO KW - gas sensing Y1 - 2012 U6 - https://doi.org/10.1021/am201427q SN - 1944-8244 VL - 4 IS - 2 SP - 791 EP - 795 PB - American Chemical Society CY - Washington ER -