TY - JOUR A1 - Scharf, Andreas A1 - Sudo, Masafumi A1 - Pracejus, Bernhard A1 - Mattern, Frank A1 - Callegari, Ivan A1 - Bauer, Wilfried A1 - Scharf, Katharina T1 - Late Lutetian (Eocene) mafic intrusion into shallow marine platform deposits north of the Oman Mountains (Rusayl Embayment) and its tectonic significance JF - Journal of African earth sciences N2 - A silica undersaturated alkali-olivine basanitic magma intruded the late Paleocene/early Eocene Jafnayn Formation near Muscat. Geochemical analyses indicate that a significant amount of host rock (limestone) was assimilated into the magma. We dated the basanite as 42.7 +/- 1.0 Ma (2 sigma error; late Lutetian), using the whole rock Ar-40/Ar-39 step-wise heating technique. Intrusion occurred in the hanging wall of a major regional extensional shear zone (Frontal Range Fault, FRF) bounding the northern margin of two domes within the Oman Mountains (Jabal Akhdar and Saih Hatat domes). Two shear intervals along the FRF have been documented. The first interval lasted immediately after emplacement of the Semail Ophiolite (latest Cretaceous-early Eocene) while the second and poorly constrained interval was assumed to have occurred during the Oligocene. The proximity of the basanite to the FRF suggests that magma used extensional faults for the upper part of its ascent path. Reactivated Permian rift faults of the Pangaea rift or other preexisting faults may have been used for the lower ascent part. We conclude that the basanite intrusion coincided with the onset of the second deformation interval along the FRF, because (1) the position of the basanite is near a dextral releasing bend, associated with the second shear interval, (2) the overlap of our Ar-40/Ar-39 age with the cooling curves for rocks from the nearby Jabal Akhdar Dome, and (3) the basanite postdates the first FRF deformation episode by > 10 Ma. Thus, the second interval along the FRF had started already during the late Lutetian and probably lasted into the Miocene. KW - Ar-40/Ar-39 age KW - Jafnayn formation KW - gravitational collapse KW - Basanite KW - extension KW - Limestone assimilation in basanite Y1 - 2020 U6 - https://doi.org/10.1016/j.jafrearsci.2020.103941 SN - 1464-343X SN - 1879-1956 VL - 170 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Scharf, Anke A1 - Handy, Mark R. A1 - Ziemann, Martin Andreas A1 - Schmid, Stefan M. T1 - Peak-temperature patterns of polyphase metamorphism resulting from accretion, subduction and collision (eastern Tauern Window, European Alps) - a study with Raman microspectroscopy on carbonaceous material (RSCM) JF - Journal of metamorphic geology N2 - Raman microspectroscopy on carbonaceous material (RSCM) from the eastern Tauern Window indicates contrasting peak-temperature patterns in three different fabric domains, each of which underwent a poly-metamorphic orogenic evolution: Domain 1 in the northeastern Tauern Window preserves oceanic units (Glockner Nappe System, Matrei Zone) that attained peak temperatures (T-p) of 350-480 degrees C following Late Cretaceous to Palaeogene nappe stacking in an accretionary wedge. Domain 2 in the central Tauern Window experienced T-p of 500-535 degrees C that was attained either within an exhumed Palaeogene subduction channel or during Oligocene Barrovian-type thermal overprinting within the Alpine collisional orogen. Domain 3 in the Eastern Tauern Subdome has a peak-temperature pattern that resulted from Eo-Oligocene nappe stacking of continental units derived from the distal European margin. This pattern acquired its presently concentric pattern in Miocene time due to post-nappe doming and extensional shearing along the Katschberg Shear Zone System (KSZS). T-p values in the largest (Hochalm) dome range from 612 degrees C in its core to 440 degrees C at its rim. The maximum peak-temperature gradient (70 degrees Ckm(-1)) occurs along the eastern margin of this dome where mylonitic shearing of the Katschberg Normal Fault (KNF) significantly thinned the Subpenninic- and Penninic nappe pile, including the pre-existing peak-temperature gradient. KW - doming KW - Eastern Alps KW - high-pressure and Barrovian-type metamorphism KW - orogen-parallel extension KW - peak-temperature pattern KW - Raman microspectroscopy Y1 - 2013 U6 - https://doi.org/10.1111/jmg.12048 SN - 0263-4929 VL - 31 IS - 8 SP - 863 EP - 880 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Kramer-Schadt, Stephanie A1 - Niedballa, Jürgen A1 - Pilgrim, John D. A1 - Schröder-Esselbach, Boris A1 - Lindenborn, Jana A1 - Reinfelder, Vanessa A1 - Stillfried, Milena A1 - Heckmann, Ilja A1 - Scharf, Anne K. A1 - Augeri, Dave M. A1 - Cheyne, Susan M. A1 - Hearn, Andrew J. A1 - Ross, Joanna A1 - Macdonald, David W. A1 - Mathai, John A1 - Eaton, James A1 - Marshall, Andrew J. A1 - Semiadi, Gono A1 - Rustam, Rustam A1 - Bernard, Henry A1 - Alfred, Raymond A1 - Samejima, Hiromitsu A1 - Duckworth, J. W. A1 - Breitenmoser-Wuersten, Christine A1 - Belant, Jerrold L. A1 - Hofer, Heribert A1 - Wilting, Andreas T1 - The importance of correcting for sampling bias in MaxEnt species distribution models JF - Diversity & distributions : a journal of biological invasions and biodiversity N2 - AimAdvancement in ecological methods predicting species distributions is a crucial precondition for deriving sound management actions. Maximum entropy (MaxEnt) models are a popular tool to predict species distributions, as they are considered able to cope well with sparse, irregularly sampled data and minor location errors. Although a fundamental assumption of MaxEnt is that the entire area of interest has been systematically sampled, in practice, MaxEnt models are usually built from occurrence records that are spatially biased towards better-surveyed areas. Two common, yet not compared, strategies to cope with uneven sampling effort are spatial filtering of occurrence data and background manipulation using environmental data with the same spatial bias as occurrence data. We tested these strategies using simulated data and a recently collated dataset on Malay civet Viverra tangalunga in Borneo. LocationBorneo, Southeast Asia. MethodsWe collated 504 occurrence records of Malay civets from Borneo of which 291 records were from 2001 to 2011 and used them in the MaxEnt analysis (baseline scenario) together with 25 environmental input variables. We simulated datasets for two virtual species (similar to a range-restricted highland and a lowland species) using the same number of records for model building. As occurrence records were biased towards north-eastern Borneo, we investigated the efficacy of spatial filtering versus background manipulation to reduce overprediction or underprediction in specific areas. ResultsSpatial filtering minimized omission errors (false negatives) and commission errors (false positives). We recommend that when sample size is insufficient to allow spatial filtering, manipulation of the background dataset is preferable to not correcting for sampling bias, although predictions were comparatively weak and commission errors increased. Main ConclusionsWe conclude that a substantial improvement in the quality of model predictions can be achieved if uneven sampling effort is taken into account, thereby improving the efficacy of species conservation planning. KW - Borneo KW - carnivora KW - conservation planning KW - ecological niche modelling KW - maximum entropy (MaxEnt) KW - sampling bias KW - Southeast Asia KW - species distribution modelling KW - viverridae Y1 - 2013 U6 - https://doi.org/10.1111/ddi.12096 SN - 1366-9516 SN - 1472-4642 VL - 19 IS - 11 SP - 1366 EP - 1379 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Scharf, Andreas A1 - Handy, Mark R. A1 - Schmid, Stefan M. A1 - Favaro, Silvia A1 - Sudo, Masafumi A1 - Schuster, Ralf A1 - Hammerschmidt, Konrad T1 - Grain-size effects on the closure temperature of white mica in a crustal-scale extensional shear - zone - Implications of in-situ Ar-40/Ar-39 laser-ablation of white mica for dating shearing and cooling (Tauern Window, Eastern Alps) JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - In-situ Ar-40/Ar-39 laser ablation dating of white-mica grains was performed on samples from the footwall of a crustal-scale extensional fault (Katschberg Normal Fault; KNF) that accommodated eastward orogen-parallel displacement of Alpine orogenic crust in the eastern part of the Tauern Window. This dating yields predominantly cooling ages ranging from 31 to 13 Myr, with most ages clustering between 21 and 17 Myr. Folded white micas that predate the main Katschberg foliation yield, within error, the same ages as white-mica grains that overgrow this foliation. However, the absolute ages of both generations are older at the base (20 Myr) where their grain size is larger (300-500 mu m), than at the top and adjacent to the hangingwall (17 Myr) of this shear zone where grain size is smaller (<100-300 mu m). This fining-upward trend of white-mica grain size within the KNF is associated with a reduction of the closure temperature from the base (similar to 445 degrees C) to the top (<400 degrees C) and explains the counter-intuitive trend of downward-increasing age of cooling in the footwall. The new data show that rapid cooling within the KNF of the eastern Tauern Window started sometime before 21 Myr according to the Ar-40/Ar-39 white-mica cooling ages and between 25-21 Myr according to the new Rb/Sr white-mica ages, i.e., shortly after the attainment of the thermal peak in the Tauern Window at similar to 25 Myr ago. These new data, combined with literature data, support earlier cooling in the eastern part of then Tauem Window than in the western part by some 3-5 Myr. (C) 2016 Elsevier B.V. All rights reserved. KW - Eastern Alps KW - Ar-40/Ar-39 laser ablation KW - Closure temperature KW - Orogen-parallel lateral extrusion KW - Rapid exhumation/cooling Y1 - 2016 U6 - https://doi.org/10.1016/j.tecto.2016.02.014 SN - 0040-1951 SN - 1879-3266 VL - 674 SP - 210 EP - 226 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Luna, Lisa Victoria A1 - Bookhagen, Bodo A1 - Niedermann, Samuel A1 - Rugel, Georg A1 - Scharf, Andreas A1 - Merchel, Silke T1 - Glacial chronology and production rate cross-calibration of five cosmogenic nuclide and mineral systems from the southern Central Andean Plateau JF - Earth & planetary science letters N2 - Glacial deposits on the high-altitude, arid southern Central Andean Plateau (CAP), the Puna in northwestern Argentina, document past changes in climate, but the associated geomorphic features have rarely been directly dated. This study provides direct age control of glacial moraine deposits from the central Puna (24 degrees S) at elevations of 3900-5000 m through surface exposure dating with cosmogenic nuclides. Our results show that the most extensive glaciations occurred before 95 ka and an additional major advance occurred between 46 and 39 ka. The latter period is synchronous with the highest lake levels in the nearby Pozuelos basin and the Minchin (Inca Huasi) wet phase on the Altiplano in the northern CAP. None of the dated moraines produced boulder ages corresponding to the Tauca wet phase (24-15 ka). Additionally, the volcanic lithologies of the deposits allow us to establish production ratios at low latitude and high elevation for five different nuclide and mineral systems: Be-10, Ne-21, and Al-26 from quartz (11 or 12 samples) and He-3 and Ne-21 from pyroxene (10 samples). We present production ratios for all combinations of the measured nuclides and cross-calibrated production rates for 21Ne in pyroxene and quartz for the high, (sub-)tropical Andes. The production rates are based on our Be-10-normalized production ratios and a weighted mean of reference 10Be production rates calibrated in the high, tropical Andes (4.02 +/- 0.12 at g(-1) yr(-1)). These are, Ne-21(qtz): 18.1 +/- 1.2 at g(-1) yr(-1) and Ne-21(px): 36.6 +/- 1.8 at g(-1) yr(-1) (En(88-94)) scaled to sea level and high latitude using the Lal/Stone scheme, with 1 sigma uncertainties. As He-3 and Al-26 have been directly calibrated in the tropical Andes, we recommend using those rates. Finally, we compare exposure ages calculated using all measured cosmogenic nuclides from each sample, including 11 feldspar samples measured for Cl-36, and a suite of previously published production rates. (C) 2018 Published by Elsevier B.V. KW - cosmogenic nuclides KW - production rate KW - cross-calibration KW - South American Monsoon KW - Quaternary climate change KW - moraine Y1 - 2018 U6 - https://doi.org/10.1016/j.epsl.2018.07.034 SN - 0012-821X SN - 1385-013X VL - 500 SP - 242 EP - 253 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Weidle, Christian A1 - Wiesenberg, Lars A1 - El-Sharkawy, Amr A1 - Krüger, Frank A1 - Scharf, Andreas A1 - Agard, Philippe A1 - Meier, Thomas T1 - A 3-D crustal shear wave velocity model and Moho map below the Semail Ophiolite, eastern Arabia JF - Geophysical journal international N2 - The Semail Ophiolite in eastern Arabia is the largest and best-exposed slice of oceanic lithosphere on land. Detailed knowledge of the tectonic evolution of the shallow crust, in particular during and after ophiolite obduction in Late Cretaceous times is contrasted by few constraints on physical and compositional properties of the middle and lower continental crust below the obducted units. The role of inherited, pre-obduction crustal architecture remains therefore unaccounted for in our understanding of crustal evolution and the present-day geology. Based on seismological data acquired during a 27-month campaign in northern Oman, Ambient Seismic Noise Tomography and Receiver Function analysis provide for the first time a 3-D radially anisotropic shear wave velocity (V-S) model and a consistent Moho map below the iconic Semail Ophiolite. The model highlights deep crustal boundaries that segment the eastern Arabian basement in two distinct units. The previously undescribed Western Jabal Akhdar Zone separates Arabian crust with typical continental properties and a thickness of similar to 40-45 km in the northwest from a compositionally different terrane in the southeast that is interpreted as a terrane accreted during the Pan-African orogeny in Neoproterozoic times. East of the Ibra Zone, another deep crustal boundary, crustal thickness decreases to 30-35 km and very high lower crustal V-S suggest large-scale mafic intrusions into, and possible underplating of the Arabian continental crust that occurred most likely during Permian breakup of Pangea. Mafic reworking is sharply bounded by the (upper crustal) Semail Gap Fault Zone, northwest of which no such high velocities are found in the crust. Topography of the Oman Mountains is supported by a mild crustal root and Moho depth below the highest topography, the Jabal Akhdar Dome, is similar to 42 km. Radial anisotropy is robustly resolved in the upper crust and aids in discriminating dipping allochthonous units from autochthonous sedimentary rocks that are indistinguishable by isotropic V-S alone. Lateral thickness variations of the ophiolite highlight the Haylayn Ophiolite Massif on the northern flank of Jabal Akhdar Dome and the Hawasina Window as the deepest reaching unit. Ophiolite thickness is similar to 10 km in the southern and northern massifs, and <= 5 km elsewhere. KW - Composition and structure of the continental crust KW - Asia KW - Body waves KW - Seismic anisotropy KW - Seismic tomography KW - Surface waves and free oscillations Y1 - 2022 U6 - https://doi.org/10.1093/gji/ggac223 SN - 0956-540X SN - 1365-246X VL - 231 IS - 2 SP - 817 EP - 834 PB - Oxford University Press CY - Oxford ER -