TY - JOUR A1 - Basler, Georg A1 - Fernie, Alisdair R. A1 - Nikoloski, Zoran T1 - Advances in metabolic flux analysis toward genome-scale profiling of higher organisms JF - Bioscience reports : communications and reviews in molecular and cellular biology N2 - Methodological and technological advances have recently paved the way for metabolic flux profiling in higher organisms, like plants. However, in comparison with omics technologies, flux profiling has yet to provide comprehensive differential flux maps at a genome-scale and in different cell types, tissues, and organs. Here we highlight the recent advances in technologies to gather metabolic labeling patterns and flux profiling approaches. We provide an opinion of how recent local flux profiling approaches can be used in conjunction with the constraint-based modeling framework to arrive at genome-scale flux maps. In addition, we point at approaches which use metabolomics data without introduction of label to predict either non-steady state fluxes in a time-series experiment or flux changes in different experimental scenarios. The combination of these developments allows an experimentally feasible approach for flux-based large-scale systems biology studies. Y1 - 2018 U6 - https://doi.org/10.1042/BSR20170224 SN - 0144-8463 SN - 1573-4935 VL - 38 PB - Portland Press (London) CY - London ER - TY - JOUR A1 - Pandey, Prashant K. A1 - Yu, Jing A1 - Omranian, Nooshin A1 - Alseekh, Saleh A1 - Vaid, Neha A1 - Fernie, Alisdair R. A1 - Nikoloski, Zoran A1 - Laitinen, Roosa A. E. T1 - Plasticity in metabolism underpins local responses to nitrogen in Arabidopsis thaliana populations JF - Plant Direct N2 - Nitrogen (N) is central for plant growth, and metabolic plasticity can provide a strategy to respond to changing N availability. We showed that two local A. thaliana populations exhibited differential plasticity in the compounds of photorespiratory and starch degradation pathways in response to three N conditions. Association of metabolite levels with growth-related and fitness traits indicated that controlled plasticity in these pathways could contribute to local adaptation and play a role in plant evolution. KW - Arabidopsis thaliana KW - natural variation KW - nitrogen availability KW - photorespiration KW - plasticity Y1 - 2019 U6 - https://doi.org/10.1002/pld3.186 SN - 2475-4455 VL - 3 IS - 11 PB - John Wiley & sonst LTD CY - Chichester ER - TY - GEN A1 - Omidbakhshfard, Mohammad Amin A1 - Neerakkal, Sujeeth A1 - Gupta, Saurabh A1 - Omranian, Nooshin A1 - Guinan, Kieran J. A1 - Brotman, Yariv A1 - Nikoloski, Zoran A1 - Fernie, Alisdair R. A1 - Mueller-Roeber, Bernd A1 - Gechev, Tsanko S. T1 - A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants develop necrotic lesions, plants pre-treated with SF (i.e., primed plants) were unaffected by PQ. Transcriptome analysis revealed induction of reactive oxygen species (ROS) marker genes, genes involved in ROS-induced programmed cell death, and autophagy-related genes after PQ treatment. These changes did not occur in PQ-stressed plants primed with SF. In contrast, upregulation of several carbohydrate metabolism genes, growth, and hormone signaling as well as antioxidant-related genes were specific to SF-primed plants. Metabolomic analyses revealed accumulation of the stress-protective metabolite maltose and the tricarboxylic acid cycle intermediates fumarate and malate in SF-primed plants. Lipidome analysis indicated that those lipids associated with oxidative stress-induced cell death and chloroplast degradation, such as triacylglycerols (TAGs), declined upon SF priming. Our study demonstrated that SF confers tolerance to PQ-induced oxidative stress in A. thaliana, an effect achieved by modulating a range of processes at the transcriptomic, metabolic, and lipid levels. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 823 KW - Ascophyllum nodosum KW - Arabidopsis thaliana KW - biostimulant KW - paraquat KW - priming KW - oxidative stress tolerance KW - reactive oxygen species Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445093 SN - 1866-8372 IS - 823 ER - TY - JOUR A1 - Engqvist, Martin K. M. A1 - Schmitz, Jessica A1 - Gertzmann, Anke A1 - Florian, Alexandra A1 - Jaspert, Nils A1 - Arif, Muhammad A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Fernie, Alisdair R. A1 - Maurino, Veronica G. T1 - GLYCOLATE OXIDASE3, a Glycolate Oxidase Homolog of Yeast L-Lactate Cytochrome c Oxidoreductase, Supports L-Lactate Oxidation in Roots of Arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - In roots of Arabidopsis (Arabidopsis thaliana), L-lactate is generated by the reduction of pyruvate via L-lactate dehydrogenase, but this enzyme does not efficiently catalyze the reverse reaction. Here, we identify the Arabidopsis glycolate oxidase (GOX) paralogs GOX1, GOX2, and GOX3 as putative L-lactate-metabolizing enzymes based on their homology to CYB2, the L-lactate cytochrome c oxidoreductase from the yeast Saccharomyces cerevisiae. We found that GOX3 uses L-lactate with a similar efficiency to glycolate; in contrast, the photorespiratory isoforms GOX1 and GOX2, which share similar enzymatic properties, use glycolate with much higher efficiencies than L-lactate. The key factor making GOX3 more efficient with L-lactate than GOX1 and GOX2 is a 5- to 10-fold lower Km for the substrate. Consequently, only GOX3 can efficiently metabolize L-lactate at low intracellular concentrations. Isotope tracer experiments as well as substrate toxicity tests using GOX3 loss-of-function and overexpressor plants indicate that L-lactate is metabolized in vivo by GOX3. Moreover, GOX3 rescues the lethal growth phenotype of a yeast strain lacking CYB2, which cannot grow on L-lactate as a sole carbon source. GOX3 is predominantly present in roots and mature to aging leaves but is largely absent from young photosynthetic leaves, indicating that it plays a role predominantly in heterotrophic rather than autotrophic tissues, at least under standard growth conditions. In roots of plants grown under normoxic conditions, loss of function of GOX3 induces metabolic rearrangements that mirror wild-type responses under hypoxia. Thus, we identified GOX3 as the enzyme that metabolizes L-lactate to pyruvate in vivo and hypothesize that it may ensure the sustainment of low levels of L-lactate after its formation under normoxia. Y1 - 2015 U6 - https://doi.org/10.1104/pp.15.01003 SN - 0032-0889 SN - 1532-2548 VL - 169 IS - 2 SP - 1042 EP - 1061 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Benina, Maria A1 - Obata, Toshihiro A1 - Mehterov, Nikolay A1 - Ivanov, Ivan A1 - Petrov, Veselin A1 - Toneva, Valentina A1 - Fernie, Alisdair R. A1 - Gechev, Tsanko S. T1 - Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature JF - Frontiers in plant science N2 - Haberlea rhodopensis is a resurrection species with extreme resistance to drought stress and desiccation but also with ability to withstand low temperatures and freezing stress. In order to identify biochemical strategies which contribute to Haberlea's remarkable stress tolerance, the metabolic reconfiguration of H. rhodopensis during low temperature (4 degrees C) and subsequent return to optimal temperatures (21 degrees C) was investigated and compared with that of the stress tolerant Thellungiella halophyla and the stress sensitive Arabidopsis thaliana. Metabolic analysis by GC-MS revealed intrinsic differences in the metabolite levels of the three species even at 21 degrees C. H. rhodopensis had significantly more raffinose, melibiose, trehalose, rhamnose, myo-inositol, sorbitol, galactinol, erythronate, threonate, 2-oxoglutarate, citrate, and glycerol than the other two species. A. thaliana had the highest levels of putrescine and fumarate, while T halophila had much higher levels of several amino acids, including alanine, asparagine, beta-alanine, histidine, isoleucine, phenylalanine, serine, threonine, and valine. In addition, the three species responded differently to the low temperature treatment and the subsequent recovery, especially with regard to the sugar metabolism. Chilling induced accumulation of maltose in H. rhodopensis and raffinose in A. thaliana but the raffinose levels in low temperature exposed Arabidopsis were still much lower than these in unstressed Haberlea. While all species accumulated sucrose during chilling, that accumulation was transient in H. rhodopensis and A. thaliana but sustained in T halophila after the return to optimal temperature. Thus, Haberlea's metabolome appeared primed for chilling stress but the low temperature acclimation induced additional stress-protective mechanisms. A diverse array of sugars, organic acids, and polyols constitute Haberlea's main metabolic defence mechanisms against chilling, while accumulation of amino acids and amino acid derivatives contribute to the low temperature acclimation in Arabidopsis and Thellungiella. Collectively, these results show inherent differences in the metabolomes under the ambient temperature and the strategies to respond to low temperature in the three species. KW - Arabidopsis thaliana KW - Haberlea rhodopensis KW - low temperature stress KW - metabolite profiling KW - Thellungiella halophila Y1 - 2013 U6 - https://doi.org/10.3389/fpls.2013.00499 SN - 1664-462X VL - 4 IS - 1 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Nietzsche, Madlen A1 - Guerra, Tiziana A1 - Alseekh, Saleh A1 - Wiermer, Marcel A1 - Sonnewald, Sophia A1 - Fernie, Alisdair R. A1 - Börnke, Frederik T1 - STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1 JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Sucrose nonfermenting related kinase1 (SnRK1) is a conserved energy sensor kinase that regulates cellular adaptation to energy deficit in plants. Activation of SnRK1 leads to the down-regulation of ATP-consuming biosynthetic processes and the stimulation of energy-generating catabolic reactions by transcriptional reprogramming and posttranslational modifications. Although considerable progress has been made during the last years in understanding the SnRK1 signaling pathway, many of its components remain unidentified. Here, we show that the catalytic alpha-subunits KIN10 and KIN11 of the Arabidopsis (Arabidopsis thaliana) SnRK1 complex interact with the STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering, and strongly attenuated senescence. Metabolite profiling revealed that the transgenic lines exhausted their carbohydrates during the dark period to a greater extent than the wild type and accumulated a range of amino acids. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance, and transgenic plants showed enhanced resistance toward a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. We discuss a possible connection of STKR1 function, SnRK1 signaling, and plant immunity. Y1 - 2017 U6 - https://doi.org/10.1104/pp.17.01461 SN - 0032-0889 SN - 1532-2548 VL - 176 IS - 2 SP - 1773 EP - 1792 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Oliver, Sandra N. A1 - Lunn, John Edward A1 - Urbanczyk-Wochniak, Ewa A1 - Lytovchenko, Anna A1 - van Dongen, Joost T. A1 - Faix, Benjamin A1 - Schmälzlin, Elmar A1 - Fernie, Alisdair R. A1 - Schmäelzlin, E. A1 - Geigenberger, Peter T1 - Decreased expression of cytosolic pyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivo repression of the alternative oxidase N2 - The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo. Y1 - 2008 UR - http://www.plantphysiol.org/content/148/3/1640.full U6 - https://doi.org/10.1104/pp.108.126516 ER - TY - JOUR A1 - Tabatabaei, Iman A1 - Alseekh, Saleh A1 - Shahid, Mohammad A1 - Leniak, Ewa A1 - Wagner, Mateusz A1 - Mahmoudi, Henda A1 - Thushar, Sumitha A1 - Fernie, Alisdair R. A1 - Murphy, Kevin M. A1 - Schmöckel, Sandra M. A1 - Tester, Mark A1 - Müller-Röber, Bernd A1 - Skirycz, Aleksandra A1 - Balazadeh, Salma T1 - The diversity of quinoa morphological traits and seed metabolic composition JF - Scientific data N2 - Quinoa (Chenopodium quinoa Willd.) is an herbaceous annual crop of the amaranth family (Amaranthaceae). It is increasingly cultivated for its nutritious grains, which are rich in protein and essential amino acids, lipids, and minerals. Quinoa exhibits a high tolerance towards various abiotic stresses including drought and salinity, which supports its agricultural cultivation under climate change conditions. The use of quinoa grains is compromised by anti-nutritional saponins, a terpenoid class of secondary metabolites deposited in the seed coat; their removal before consumption requires extensive washing, an economically and environmentally unfavorable process; or their accumulation can be reduced through breeding. In this study, we analyzed the seed metabolomes, including amino acids, fatty acids, and saponins, from 471 quinoa cultivars, including two related species, by liquid chromatography - mass spectrometry. Additionally, we determined a large number of agronomic traits including biomass, flowering time, and seed yield. The results revealed considerable diversity between genotypes and provide a knowledge base for future breeding or genome editing of quinoa. Y1 - 2022 U6 - https://doi.org/10.1038/s41597-022-01399-y SN - 2052-4463 VL - 9 IS - 1 PB - Nature Research CY - Berlin ER -