TY - JOUR A1 - Araujo, Wagner L. A1 - Nunes-Nesi, Adriano A1 - Nikoloski, Zoran A1 - Sweetlove, Lee J. A1 - Fernie, Alisdair T1 - Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues JF - Plant, cell & environment : cell physiology, whole-plant physiology, community physiology N2 - The tricarboxylic acid (TCA) cycle is a crucial component of respiratory metabolism in both photosynthetic and heterotrophic plant organs. All of the major genes of the tomato TCA cycle have been cloned recently, allowing the generation of a suite of transgenic plants in which the majority of the enzymes in the pathway are progressively decreased. Investigations of these plants have provided an almost complete view of the distribution of control in this important pathway. Our studies suggest that citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA ligase, succinate dehydrogenase, fumarase and malate dehydrogenase have control coefficients flux for respiration of -0.4, 0.964, -0.123, 0.0008, 0.289, 0.601 and 1.76, respectively; while 2-oxoglutarate dehydrogenase is estimated to have a control coefficient of 0.786 in potato tubers. These results thus indicate that the control of this pathway is distributed among malate dehydrogenase, aconitase, fumarase, succinate dehydrogenase and 2-oxoglutarate dehydrogenase. The unusual distribution of control estimated here is consistent with specific non-cyclic flux mode and cytosolic bypasses that operate in illuminated leaves. These observations are discussed in the context of known regulatory properties of the enzymes and some illustrative examples of how the pathway responds to environmental change are given. KW - metabolic control analysis KW - metabolic regulation KW - respiration KW - Solanum lycopersicum (tomato) KW - TCA cycle Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-3040.2011.02332.x SN - 0140-7791 VL - 35 IS - 1 SP - 1 EP - 21 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schwahn, Kevin A1 - de Souza, Leonardo Perez A1 - Fernie, Alisdair A1 - Tohge, Takayuki T1 - Metabolomics-assisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade JF - Journal of integrative plant biology N2 - Steroidal glycoalkaloids (SGAs) are nitrogen-containing secondary metabolites of the Solanum species, which are known to have large chemical and bioactive diversity in nature. While recent effort and development on LC/MS techniques for SGA profiling have elucidated the main pathways of SGA metabolism in tomato, the problem of peak annotation still remains due to the vast diversity of chemical structure and similar on overlapping of chemical formula. Here we provide a case study of peak classification and annotation approach by integration of species and tissue specificities of SGA accumulation for provision of comprehensive pathways of SGA biosynthesis. In order to elucidate natural diversity of SGA biosynthesis, a total of 169 putative SGAs found in eight tomato accessions (Solanum lycopersicum, S. pimpinellifolium, S. cheesmaniae, S. chmielewskii, S. neorickii, S. peruvianum, S. habrochaites, S. pennellii) and four tissue types were used for correlation analysis. The results obtained in this study contribute annotation and classification of SGAs as well as detecting putative novel biosynthetic branch points. As such this represents a novel strategy for peak annotation for plant secondary metabolites. KW - Fruit ripening KW - glycoalkaloids KW - secondary metabolite KW - Solanum lycopersicum KW - tomato accessions Y1 - 2014 U6 - https://doi.org/10.1111/jipb.12274 SN - 1672-9072 SN - 1744-7909 VL - 56 IS - 9 SP - 864 EP - 875 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Zhang, Youjun A1 - Sun, Feng A1 - Fettke, Jörg A1 - Schoettler, Mark Aurel A1 - Ramsden, Lawrence A1 - Fernie, Alisdair A1 - Lim, Boon Leong T1 - Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development JF - FEBS letters : the journal for rapid publication of short reports in molecular biosciences N2 - Changes in carbon flow and sink/source activities can affect floral, architectural, and reproductive traits of plants. In potato, overexpression (OE) of the purple acid phosphatase 2 of Arabidopsis (AtPAP2) resulted in earlier flowering, faster growth rate, increased tubers and tuber starch content, and higher photosynthesis rate. There was a significant change in sucrose, glucose and fructose levels in leaves, phloem and sink biomass of the OE lines, consistent with an increased expression of sucrose transporter 1 (StSUT1). Furthermore, the expression levels and enzyme activity of sucrose-phosphate synthase (SPS) were also significantly increased in the OE lines. These findings strongly suggest that higher carbon supply from the source and improved sink strength can improve potato tuber yield. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. KW - Potato KW - AtPAP2 KW - Photosynthesis KW - Tuber yield KW - Sugar efflux Y1 - 2014 U6 - https://doi.org/10.1016/j.febslet.2014.08.019 SN - 0014-5793 SN - 1873-3468 VL - 588 IS - 20 SP - 3726 EP - 3731 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kleessen, Sabrina A1 - Araujo, Wagner L. A1 - Fernie, Alisdair A1 - Nikoloski, Zoran T1 - Model-based Confirmation of Alternative Substrates of Mitochondrial Electron Transport Chain JF - The journal of biological chemistry N2 - Background: There are alternative substrates to the mitochondrial respiration. Results: Data-driven model-based analysis renders predictions of alternative substrates to the mitochondrial respiration. Conclusion: Metabolomics data in conjunction with flux-based models can discriminate among hypotheses based on enzymology alone. Significance: This analysis provides a basic framework for in silico studies of alternative pathways in metabolism. Y1 - 2012 U6 - https://doi.org/10.1074/jbc.M111.310383 SN - 0021-9258 VL - 287 IS - 14 SP - 11122 EP - 11131 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Lotkowska, Magda E. A1 - Tohge, Takayuki A1 - Fernie, Alisdair A1 - Xue, Gang-Ping A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd T1 - The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up-and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C) CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. Y1 - 2015 U6 - https://doi.org/10.1104/pp.15.00605 SN - 0032-0889 SN - 1532-2548 VL - 169 IS - 3 SP - 1862 EP - 1880 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Malinova, Irina A1 - Mahlow, Sebastian A1 - Alseekh, Saleh A1 - Orawetz, Tom A1 - Fernie, Alisdair A1 - Baumann, Otto A1 - Steup, Martin A1 - Fettke, Jörg T1 - Double knockout mutants of arabidopsis grown under normal conditions reveal that the plastidial phosphorylase isozyme participates in transitory starch metabolism JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - In leaves of two starch-related single-knockout lines lacking either the cytosolic transglucosidase (also designated as disproportionating enzyme 2, DPE2) or the maltose transporter (MEX1), the activity of the plastidial phosphorylase isozyme (PHS1) is increased. In both mutants, metabolism of starch-derived maltose is impaired but inhibition is effective at different subcellular sites. Two constitutive double knockout mutants were generated (designated as dpe2-1 x phs1a and mex1 x phs1b) both lacking functional PHS1. They reveal that in normally grown plants, the plastidial phosphorylase isozyme participates in transitory starch degradation and that the central carbon metabolism is closely integrated into the entire cell biology. All plants were grown either under continuous illumination or in a light-dark regime. Both double mutants were compromised in growth and, compared with the single knockout plants, possess less average leaf starch when grown in a light-dark regime. Starch and chlorophyll contents decline with leaf age. As revealed by transmission electron microscopy, mesophyll cells degrade chloroplasts, but degradation is not observed in plants grown under continuous illumination. The two double mutants possess similar but not identical phenotypes. When grown in a light-dark regime, mesophyll chloroplasts of dpe2-1 x phs1a contain a single starch granule but under continuous illumination more granules per chloroplast are formed. The other double mutant synthesizes more granules under either growth condition. In continuous light, growth of both double mutants is similar to that of the parental single knockout lines. Metabolite profiles and oligoglucan patterns differ largely in the two double mutants. Y1 - 2014 U6 - https://doi.org/10.1104/pp.113.227843 SN - 0032-0889 SN - 1532-2548 VL - 164 IS - 2 SP - 907 EP - 921 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Balazadeh, Salma A1 - Schildhauer, Joerg A1 - Araujo, Wagner L. A1 - Munne-Bosch, Sergi A1 - Fernie, Alisdair A1 - Proost, Sebastian A1 - Humbeck, Klaus A1 - Müller-Röber, Bernd T1 - Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences JF - Journal of experimental botany N2 - Leaf senescence is a developmentally controlled process, which is additionally modulated by a number of adverse environmental conditions. Nitrogen shortage is a well-known trigger of precocious senescence in many plant species including crops, generally limiting biomass and seed yield. However, leaf senescence induced by nitrogen starvation may be reversed when nitrogen is resupplied at the onset of senescence. Here, the transcriptomic, hormonal, and global metabolic rearrangements occurring during nitrogen resupply-induced reversal of senescence in Arabidopsis thaliana were analysed. The changes induced by senescence were essentially in keeping with those previously described; however, these could, by and large, be reversed. The data thus indicate that plants undergoing senescence retain the capacity to sense and respond to the availability of nitrogen nutrition. The combined data are discussed in the context of the reversibility of the senescence programme and the evolutionary benefit afforded thereby. Future prospects for understanding and manipulating this process in both Arabidopsis and crop plants are postulated. KW - Arabidopsis KW - gene expression KW - metabolomics KW - nitrogen limitation KW - senescence KW - transcriptome Y1 - 2014 U6 - https://doi.org/10.1093/jxb/eru119 SN - 0022-0957 SN - 1460-2431 VL - 65 IS - 14 SP - 3975 EP - 3992 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Fettke, Jörg A1 - Fernie, Alisdair T1 - Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism JF - Trends in plant science N2 - In most plants, carbohydrates represent the major energy store as well as providing the building blocks for essential structural polymers. Although the major pathways for carbohydrate biosynthesis, degradation, and transport are well characterized, several key steps have only recently been discovered. In addition, several novel minor metabolic routes have been uncovered in the past few years. Here we review current studies of plant carbohydrate metabolism detailing the expanding compendium of functionally characterized transport proteins as well as our deeper comprehension of more minor and conditionally activated metabolic pathways. We additionally explore the pertinent questions that will allow us to enhance our understanding of the response of both major and minor carbohydrate fluxes to changing cellular circumstances. Y1 - 2015 U6 - https://doi.org/10.1016/j.tplants.2015.04.012 SN - 1360-1385 VL - 20 IS - 8 SP - 490 EP - 497 PB - Elsevier CY - London ER - TY - JOUR A1 - Omranian, Nooshin A1 - Kleessen, Sabrina A1 - Tohge, Takayuki A1 - Klie, Sebastian A1 - Basler, Georg A1 - Müller-Röber, Bernd A1 - Fernie, Alisdair A1 - Nikoloski, Zoran T1 - Differential metabolic and coexpression networks of plant metabolism JF - Trends in plant science N2 - Recent analyses have demonstrated that plant metabolic networks do not differ in their structural properties and that genes involved in basic metabolic processes show smaller coexpression than genes involved in specialized metabolism. By contrast, our analysis reveals differences in the structure of plant metabolic networks and patterns of coexpression for genes in (non)specialized metabolism. Here we caution that conclusions concerning the organization of plant metabolism based on network-driven analyses strongly depend on the computational approaches used. KW - plant specialized metabolism KW - metabolic networks KW - gene coexpression KW - differential network analysis Y1 - 2015 U6 - https://doi.org/10.1016/j.tplants.2015.02.002 SN - 1360-1385 VL - 20 IS - 5 SP - 266 EP - 268 PB - Elsevier CY - London ER - TY - JOUR A1 - Smith, Sarah R. A1 - Dupont, Chris L. A1 - McCarthy, James K. A1 - Broddrick, Jared T. A1 - Obornik, Miroslav A1 - Horak, Ales A1 - Füssy, Zoltán A1 - Cihlar, Jaromir A1 - Kleessen, Sabrina A1 - Zheng, Hong A1 - McCrow, John P. A1 - Hixson, Kim K. A1 - Araujo, Wagner L. A1 - Nunes-Nesi, Adriano A1 - Fernie, Alisdair A1 - Nikoloski, Zoran A1 - Palsson, Bernhard O. A1 - Allen, Andrew E. T1 - Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom JF - Nature Communications N2 - Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa. KW - Biochemistry KW - Computational biology and bioinformatics KW - Evolution KW - Microbiology KW - Molecular biology Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-12407-y SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER -