TY - JOUR A1 - Mathieu-Rivet, Elodie A1 - Gévaudant, Frédéric A1 - Sicard, Adrien A1 - Salar, Sophie A1 - Do, Phuc Thi A1 - Mouras, Armand A1 - Fernie, Alisdair R. A1 - Gibon, Yves A1 - Rothan, Christophe A1 - Chevalier, Christian A1 - Hernould, Michel T1 - Functional analysis of the anaphase promoting complex activator CCS52A highlights the crucial role of endo- reduplication for fruit growth in tomato Y1 - 2010 SN - 1365-313X ER - TY - JOUR A1 - Wu, Anhui A1 - Allu, Annapurna Devi A1 - Garapati, Prashanth A1 - Siddiqui, Hamad A1 - Dortay, Hakan A1 - Zanor, Maria-Ines A1 - Asensi-Fabado, Maria Amparo A1 - Munne-Bosch, Sergi A1 - Antonio, Carla A1 - Tohge, Takayuki A1 - Fernie, Alisdair R. A1 - Kaufmann, Kerstin A1 - Xue, Gang-Ping A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - Jungbrunnen1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in arabidopsis JF - The plant cell N2 - The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H2O2 levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species-responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H2O2 treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H2O2 level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A. Y1 - 2012 U6 - https://doi.org/10.1105/tpc.111.090894 SN - 1040-4651 VL - 24 IS - 2 SP - 482 EP - 506 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Fettke, Jörg A1 - Nunes-Nesi, Adriano A1 - Fernie, Alisdair R. A1 - Steup, Martin T1 - Identification of a novel heteroglycan-interacting protein, HIP 1.3, from Arabidopsis thaliana JF - Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants N2 - Plastidial degradation of transitory starch yields mainly maltose and glucose. Following the export into the cytosol, maltose acts as donor for a glucosyl transfer to cytosolic heteroglycans as mediated by a cytosolic transglucosidase (DPE2; EC 2.4.1.25) and the second glucosyl residue is liberated as glucose. The cytosolic phosphorylase (Pho2/PHS2; EC 2.4.1.1) also interacts with heteroglycans using the same intramolecular sites as DPE2. Thus, the two glucosyl transferases interconnect the cytosolic pools of glucose and glucose 1-phosphate. Due to the complex monosaccharide pattern, other heteroglycan-interacting proteins (Hips) are expected to exist. Identification of those proteins was approached by using two types of affinity chromatography. Heteroglycans from leaves of Arabidopsis thaliana (Col-0) covalently bound to Sepharose served as ligands that were reacted with a complex mixture of buffer-soluble proteins from Arabidopsis leaves. Binding proteins were eluted by sodium chloride. For identification, SDS-PAGE, tryptic digestion and MALDI-TOF analyses were applied. A strongly interacting polypeptide (approximately 40 kDa; designated as HIP1.3) was observed as product of locus At1g09340. Arabidopsis mutants deficient in HIP1.3 were reduced in growth and contained heteroglycans displaying an altered monosaccharide pattern. Wild type plants express HIP1.3 most strongly in leaves. As revealed by immuno fluorescence, HIP1.3 is located in the cytosol of mesophyll cells but mostly associated with the cytosolic surface of the chloroplast envelope membranes. In an HIP1.3-deficient mutant the immunosignal was undetectable. Metabolic profiles from leaves of this mutant and wild type plants as well were determined by GC-MS. As compared to the wild type control, more than ten metabolites, such as ascorbic acid, fructose, fructose bisphosphate, glucose, glycine, were elevated in darkness but decreased in the light. Although the biochemical function of HIP1.3 has not yet been elucidated, it is likely to possess an important function in the central carbon metabolism of higher plants. KW - Arabidopsis thaliana KW - Carbohydrate binding proteins KW - Cytosolic heteroglycans KW - Maltose metabolism KW - Starch metabolism Y1 - 2011 U6 - https://doi.org/10.1016/j.jplph.2010.09.008 SN - 0176-1617 VL - 168 IS - 12 SP - 1415 EP - 1425 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Gechev, Tsanko S. A1 - Hille, Jacques A1 - Woerdenbag, Herman J. A1 - Benina, Maria A1 - Mehterov, Nikolay A1 - Toneva, Valentina A1 - Fernie, Alisdair R. A1 - Müller-Röber, Bernd T1 - Natural products from resurrection plants: Potential for medical applications JF - Biotechnology advances : an international review journal ; research reviews and patent abstracts N2 - Resurrection species are a group of land plants that can tolerate extreme desiccation of their vegetative tissues during harsh drought stress, and still quickly often within hours regain normal physiological and metabolic functions following rehydration. At the molecular level, this desiccation tolerance is attributed to basal cellular mechanisms including the constitutive expression of stress-associated genes and high levels of protective metabolites present already in the absence of stress, as well as to transcriptome and metabolome reconfigurations rapidly occurring during the initial phases of drought stress. Parts of this response are conferred by unique metabolites, including a diverse array of sugars, phenolic compounds, and polyols, some of which accumulate to high concentrations within the plant cell. In addition to drought stress, these metabolites are proposed to contribute to the protection against other abiotic stresses and to an increased oxidative stress tolerance. Recently, extracts of resurrection species and particular secondary metabolites therein were reported to display biological activities of importance to medicine, with e.g. antibacterial, anticancer, antifungal, and antiviral activities, rendering them possible candidates for the development of novel drug substances as well as for cosmetics. Herein, we provide an overview of the metabolite composition of resurrection species, summarize the latest reports related to the use of natural products from resurrection plants, and outline their potential for medical applications. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). KW - Antibacterial KW - Anticancer KW - Antifungal KW - Antiviral KW - Natural product KW - Resurrection plant KW - Secondary metabolite KW - Synthetic biology Y1 - 2014 U6 - https://doi.org/10.1016/j.biotechadv.2014.03.005 SN - 0734-9750 SN - 1873-1899 VL - 32 IS - 6 SP - 1091 EP - 1101 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Rohrmann, Johannes A1 - Tohge, Takayuki A1 - Alba, Rob A1 - Osorio, Sonia A1 - Caldana, Camila A1 - McQuinn, Ryan A1 - Arvidsson, Samuel Janne A1 - van der Merwe, Margaretha J. A1 - Riano-Pachon, Diego Mauricio A1 - Müller-Röber, Bernd A1 - Fei, Zhangjun A1 - Nesi, Adriano Nunes A1 - Giovannoni, James J. A1 - Fernie, Alisdair R. T1 - Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development JF - The plant journal N2 - Maturation of fleshy fruits such as tomato (Solanum lycopersicum) is subject to tight genetic control. Here we describe the development of a quantitative real-time PCR platform that allows accurate quantification of the expression level of approximately 1000 tomato transcription factors. In addition to utilizing this novel approach, we performed cDNA microarray analysis and metabolite profiling of primary and secondary metabolites using GC-MS and LC-MS, respectively. We applied these platforms to pericarp material harvested throughout fruit development, studying both wild-type Solanum lycopersicum cv. Ailsa Craig and the hp1 mutant. This mutant is functionally deficient in the tomato homologue of the negative regulator of the light signal transduction gene DDB1 from Arabidopsis, and is furthermore characterized by dramatically increased pigment and phenolic contents. We choose this particular mutant as it had previously been shown to have dramatic alterations in the content of several important fruit metabolites but relatively little impact on other ripening phenotypes. The combined dataset was mined in order to identify metabolites that were under the control of these transcription factors, and, where possible, the respective transcriptional regulation underlying this control. The results are discussed in terms of both programmed fruit ripening and development and the transcriptional and metabolic shifts that occur in parallel during these processes. KW - transcription factor KW - Solanum lycopersicum KW - quantitative RT-PCR KW - microarray KW - metabolomics KW - fleshy fruit ripening Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-313X.2011.04750.x SN - 0960-7412 VL - 68 IS - 6 SP - 999 EP - 1013 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Ribeiro, Dimas M. A1 - Araujo, Wagner L. A1 - Fernie, Alisdair R. A1 - Schippers, Jos H. M. A1 - Müller-Röber, Bernd T1 - Action of Gibberellins on growth and metabolism of arabidopsis plants Associated with high concentration of carbon dioxide JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Although the positive effect of elevated CO2 concentration [CO2] on plant growth is well known, it remains unclear whether global climate change will positively or negatively affect crop yields. In particular, relatively little is known about the role of hormone pathways in controlling the growth responses to elevated [CO2]. Here, we studied the impact of elevated [CO2] on plant biomass and metabolism in Arabidopsis (Arabidopsis thaliana) in relation to the availability of gibberellins (GAs). Inhibition of growth by the GA biosynthesis inhibitor paclobutrazol (PAC) at ambient [CO2] (350 mu mol CO2 mol(-1)) was reverted by elevated [CO2] (750 mu mol CO2 mol(-1)). Thus, we investigated the metabolic adjustment and modulation of gene expression in response to changes in growth of plants imposed by varying the GA regime in ambient and elevated [CO2]. In the presence of PAC (low-GA regime), the activities of enzymes involved in photosynthesis and inorganic nitrogen assimilation were markedly increased at elevated [CO2], whereas the activities of enzymes of organic acid metabolism were decreased. Under ambient [CO2], nitrate, amino acids, and protein accumulated upon PAC treatment; however, this was not the case when plants were grown at elevated [CO2]. These results suggest that only under ambient [CO2] is GA required for the integration of carbohydrate and nitrogen metabolism underlying optimal biomass determination. Our results have implications concerning the action of the Green Revolution genes in future environmental conditions. Y1 - 2012 U6 - https://doi.org/10.1104/pp.112.204842 SN - 0032-0889 VL - 160 IS - 4 SP - 1781 EP - 1794 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Araujo, Wagner L. A1 - Nunes-Nesi, Adriano A1 - Nikoloski, Zoran A1 - Sweetlove, Lee J. A1 - Fernie, Alisdair R. T1 - Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues JF - Plant, cell & environment : cell physiology, whole-plant physiology, community physiology N2 - The tricarboxylic acid (TCA) cycle is a crucial component of respiratory metabolism in both photosynthetic and heterotrophic plant organs. All of the major genes of the tomato TCA cycle have been cloned recently, allowing the generation of a suite of transgenic plants in which the majority of the enzymes in the pathway are progressively decreased. Investigations of these plants have provided an almost complete view of the distribution of control in this important pathway. Our studies suggest that citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA ligase, succinate dehydrogenase, fumarase and malate dehydrogenase have control coefficients flux for respiration of -0.4, 0.964, -0.123, 0.0008, 0.289, 0.601 and 1.76, respectively; while 2-oxoglutarate dehydrogenase is estimated to have a control coefficient of 0.786 in potato tubers. These results thus indicate that the control of this pathway is distributed among malate dehydrogenase, aconitase, fumarase, succinate dehydrogenase and 2-oxoglutarate dehydrogenase. The unusual distribution of control estimated here is consistent with specific non-cyclic flux mode and cytosolic bypasses that operate in illuminated leaves. These observations are discussed in the context of known regulatory properties of the enzymes and some illustrative examples of how the pathway responds to environmental change are given. KW - metabolic control analysis KW - metabolic regulation KW - respiration KW - Solanum lycopersicum (tomato) KW - TCA cycle Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-3040.2011.02332.x SN - 0140-7791 VL - 35 IS - 1 SP - 1 EP - 21 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Ribeiro, Dimas M. A1 - Araujo, Wagner L. A1 - Fernie, Alisdair R. A1 - Schippers, Jos H. M. A1 - Müller-Röber, Bernd T1 - Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis JF - Journal of experimental botany N2 - Although gibberellins (GAs) are well known for their growth control function, little is known about their effects on primary metabolism. Here the modulation of gene expression and metabolic adjustment in response to changes in plant (Arabidopsis thaliana) growth imposed on varying the gibberellin regime were evaluated. Polysomal mRNA populations were profiled following treatment of plants with paclobutrazol (PAC), an inhibitor of GA biosynthesis, and gibberellic acid (GA(3)) to monitor translational regulation of mRNAs globally. Gibberellin levels did not affect levels of carbohydrates in plants treated with PAC and/or GA(3). However, the tricarboxylic acid cycle intermediates malate and fumarate, two alternative carbon storage molecules, accumulated upon PAC treatment. Moreover, an increase in nitrate and in the levels of the amino acids was observed in plants grown under a low GA regime. Only minor changes in amino acid levels were detected in plants treated with GA(3) alone, or PAC plus GA(3). Comparison of the molecular changes at the transcript and metabolite levels demonstrated that a low GA level mainly affects growth by uncoupling growth from carbon availability. These observations, together with the translatome changes, reveal an interaction between energy metabolism and GA-mediated control of growth to coordinate cell wall extension, secondary metabolism, and lipid metabolism. KW - Gibberellin KW - growth KW - paclobutrazol KW - primary metabolism KW - translatome Y1 - 2012 U6 - https://doi.org/10.1093/jxb/err463 SN - 0022-0957 VL - 63 IS - 7 SP - 2769 EP - 2786 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kleessen, Sabrina A1 - Araujo, Wagner L. A1 - Fernie, Alisdair R. A1 - Nikoloski, Zoran T1 - Model-based Confirmation of Alternative Substrates of Mitochondrial Electron Transport Chain JF - The journal of biological chemistry N2 - Background: There are alternative substrates to the mitochondrial respiration. Results: Data-driven model-based analysis renders predictions of alternative substrates to the mitochondrial respiration. Conclusion: Metabolomics data in conjunction with flux-based models can discriminate among hypotheses based on enzymology alone. Significance: This analysis provides a basic framework for in silico studies of alternative pathways in metabolism. Y1 - 2012 U6 - https://doi.org/10.1074/jbc.M111.310383 SN - 0021-9258 VL - 287 IS - 14 SP - 11122 EP - 11131 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Lotkowska, Magda E. A1 - Tohge, Takayuki A1 - Fernie, Alisdair R. A1 - Xue, Gang-Ping A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd T1 - The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up-and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C) CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. Y1 - 2015 U6 - https://doi.org/10.1104/pp.15.00605 SN - 0032-0889 SN - 1532-2548 VL - 169 IS - 3 SP - 1862 EP - 1880 PB - American Society of Plant Physiologists CY - Rockville ER -