TY - JOUR A1 - Wuttke, Matthias A1 - Li, Yong A1 - Li, Man A1 - Sieber, Karsten B. A1 - Feitosa, Mary F. A1 - Gorski, Mathias A1 - Tin, Adrienne A1 - Wang, Lihua A1 - Chu, Audrey Y. A1 - Hoppmann, Anselm A1 - Kirsten, Holger A1 - Giri, Ayush A1 - Chai, Jin-Fang A1 - Sveinbjornsson, Gardar A1 - Tayo, Bamidele O. A1 - Nutile, Teresa A1 - Fuchsberger, Christian A1 - Marten, Jonathan A1 - Cocca, Massimiliano A1 - Ghasemi, Sahar A1 - Xu, Yizhe A1 - Horn, Katrin A1 - Noce, Damia A1 - Van der Most, Peter J. A1 - Sedaghat, Sanaz A1 - Yu, Zhi A1 - Akiyama, Masato A1 - Afaq, Saima A1 - Ahluwalia, Tarunveer Singh A1 - Almgren, Peter A1 - Amin, Najaf A1 - Arnlov, Johan A1 - Bakker, Stephan J. L. A1 - Bansal, Nisha A1 - Baptista, Daniela A1 - Bergmann, Sven A1 - Biggs, Mary L. A1 - Biino, Ginevra A1 - Boehnke, Michael A1 - Boerwinkle, Eric A1 - Boissel, Mathilde A1 - Böttinger, Erwin A1 - Boutin, Thibaud S. A1 - Brenner, Hermann A1 - Brumat, Marco A1 - Burkhardt, Ralph A1 - Butterworth, Adam S. A1 - Campana, Eric A1 - Campbell, Archie A1 - Campbell, Harry A1 - Canouil, Mickael A1 - Carroll, Robert J. A1 - Catamo, Eulalia A1 - Chambers, John C. A1 - Chee, Miao-Ling A1 - Chee, Miao-Li A1 - Chen, Xu A1 - Cheng, Ching-Yu A1 - Cheng, Yurong A1 - Christensen, Kaare A1 - Cifkova, Renata A1 - Ciullo, Marina A1 - Concas, Maria Pina A1 - Cook, James P. A1 - Coresh, Josef A1 - Corre, Tanguy A1 - Sala, Cinzia Felicita A1 - Cusi, Daniele A1 - Danesh, John A1 - Daw, E. Warwick A1 - De Borst, Martin H. A1 - De Grandi, Alessandro A1 - De Mutsert, Renee A1 - De Vries, Aiko P. J. A1 - Degenhardt, Frauke A1 - Delgado, Graciela A1 - Demirkan, Ayse A1 - Di Angelantonio, Emanuele A1 - Dittrich, Katalin A1 - Divers, Jasmin A1 - Dorajoo, Rajkumar A1 - Eckardt, Kai-Uwe A1 - Ehret, Georg A1 - Elliott, Paul A1 - Endlich, Karlhans A1 - Evans, Michele K. A1 - Felix, Janine F. A1 - Foo, Valencia Hui Xian A1 - Franco, Oscar H. A1 - Franke, Andre A1 - Freedman, Barry I. A1 - Freitag-Wolf, Sandra A1 - Friedlander, Yechiel A1 - Froguel, Philippe A1 - Gansevoort, Ron T. A1 - Gao, He A1 - Gasparini, Paolo A1 - Gaziano, J. Michael A1 - Giedraitis, Vilmantas A1 - Gieger, Christian A1 - Girotto, Giorgia A1 - Giulianini, Franco A1 - Gogele, Martin A1 - Gordon, Scott D. A1 - Gudbjartsson, Daniel F. A1 - Gudnason, Vilmundur A1 - Haller, Toomas A1 - Hamet, Pavel A1 - Harris, Tamara B. A1 - Hartman, Catharina A. A1 - Hayward, Caroline A1 - Hellwege, Jacklyn N. A1 - Heng, Chew-Kiat A1 - Hicks, Andrew A. A1 - Hofer, Edith A1 - Huang, Wei A1 - Hutri-Kahonen, Nina A1 - Hwang, Shih-Jen A1 - Ikram, M. Arfan A1 - Indridason, Olafur S. A1 - Ingelsson, Erik A1 - Ising, Marcus A1 - Jaddoe, Vincent W. V. A1 - Jakobsdottir, Johanna A1 - Jonas, Jost B. A1 - Joshi, Peter K. A1 - Josyula, Navya Shilpa A1 - Jung, Bettina A1 - Kahonen, Mika A1 - Kamatani, Yoichiro A1 - Kammerer, Candace M. A1 - Kanai, Masahiro A1 - Kastarinen, Mika A1 - Kerr, Shona M. A1 - Khor, Chiea-Chuen A1 - Kiess, Wieland A1 - Kleber, Marcus E. A1 - Koenig, Wolfgang A1 - Kooner, Jaspal S. A1 - Korner, Antje A1 - Kovacs, Peter A1 - Kraja, Aldi T. A1 - Krajcoviechova, Alena A1 - Kramer, Holly A1 - Kramer, Bernhard K. A1 - Kronenberg, Florian A1 - Kubo, Michiaki A1 - Kuhnel, Brigitte A1 - Kuokkanen, Mikko A1 - Kuusisto, Johanna A1 - La Bianca, Martina A1 - Laakso, Markku A1 - Lange, Leslie A. A1 - Langefeld, Carl D. A1 - Lee, Jeannette Jen-Mai A1 - Lehne, Benjamin A1 - Lehtimaki, Terho A1 - Lieb, Wolfgang A1 - Lim, Su-Chi A1 - Lind, Lars A1 - Lindgren, Cecilia M. A1 - Liu, Jun A1 - Liu, Jianjun A1 - Loeffler, Markus A1 - Loos, Ruth J. F. A1 - Lucae, Susanne A1 - Lukas, Mary Ann A1 - Lyytikainen, Leo-Pekka A1 - Magi, Reedik A1 - Magnusson, Patrik K. E. A1 - Mahajan, Anubha A1 - Martin, Nicholas G. A1 - Martins, Jade A1 - Marz, Winfried A1 - Mascalzoni, Deborah A1 - Matsuda, Koichi A1 - Meisinger, Christa A1 - Meitinger, Thomas A1 - Melander, Olle A1 - Metspalu, Andres A1 - Mikaelsdottir, Evgenia K. A1 - Milaneschi, Yuri A1 - Miliku, Kozeta A1 - Mishra, Pashupati P. A1 - Program, V. A. Million Veteran A1 - Mohlke, Karen L. A1 - Mononen, Nina A1 - Montgomery, Grant W. A1 - Mook-Kanamori, Dennis O. A1 - Mychaleckyj, Josyf C. A1 - Nadkarni, Girish N. A1 - Nalls, Mike A. A1 - Nauck, Matthias A1 - Nikus, Kjell A1 - Ning, Boting A1 - Nolte, Ilja M. A1 - Noordam, Raymond A1 - Olafsson, Isleifur A1 - Oldehinkel, Albertine J. A1 - Orho-Melander, Marju A1 - Ouwehand, Willem H. A1 - Padmanabhan, Sandosh A1 - Palmer, Nicholette D. A1 - Palsson, Runolfur A1 - Penninx, Brenda W. J. H. A1 - Perls, Thomas A1 - Perola, Markus A1 - Pirastu, Mario A1 - Pirastu, Nicola A1 - Pistis, Giorgio A1 - Podgornaia, Anna I. A1 - Polasek, Ozren A1 - Ponte, Belen A1 - Porteous, David J. A1 - Poulain, Tanja A1 - Pramstaller, Peter P. A1 - Preuss, Michael H. A1 - Prins, Bram P. A1 - Province, Michael A. A1 - Rabelink, Ton J. A1 - Raffield, Laura M. A1 - Raitakari, Olli T. A1 - Reilly, Dermot F. A1 - Rettig, Rainer A1 - Rheinberger, Myriam A1 - Rice, Kenneth M. A1 - Ridker, Paul M. A1 - Rivadeneira, Fernando A1 - Rizzi, Federica A1 - Roberts, David J. A1 - Robino, Antonietta A1 - Rossing, Peter A1 - Rudan, Igor A1 - Rueedi, Rico A1 - Ruggiero, Daniela A1 - Ryan, Kathleen A. A1 - Saba, Yasaman A1 - Sabanayagam, Charumathi A1 - Salomaa, Veikko A1 - Salvi, Erika A1 - Saum, Kai-Uwe A1 - Schmidt, Helena A1 - Schmidt, Reinhold A1 - Ben Schottker, A1 - Schulz, Christina-Alexandra A1 - Schupf, Nicole A1 - Shaffer, Christian M. A1 - Shi, Yuan A1 - Smith, Albert V. A1 - Smith, Blair H. A1 - Soranzo, Nicole A1 - Spracklen, Cassandra N. A1 - Strauch, Konstantin A1 - Stringham, Heather M. A1 - Stumvoll, Michael A1 - Svensson, Per O. A1 - Szymczak, Silke A1 - Tai, E-Shyong A1 - Tajuddin, Salman M. A1 - Tan, Nicholas Y. Q. A1 - Taylor, Kent D. A1 - Teren, Andrej A1 - Tham, Yih-Chung A1 - Thiery, Joachim A1 - Thio, Chris H. L. A1 - Thomsen, Hauke A1 - Thorleifsson, Gudmar A1 - Toniolo, Daniela A1 - Tonjes, Anke A1 - Tremblay, Johanne A1 - Tzoulaki, Ioanna A1 - Uitterlinden, Andre G. A1 - Vaccargiu, Simona A1 - Van Dam, Rob M. A1 - Van der Harst, Pim A1 - Van Duijn, Cornelia M. A1 - Edward, Digna R. Velez A1 - Verweij, Niek A1 - Vogelezang, Suzanne A1 - Volker, Uwe A1 - Vollenweider, Peter A1 - Waeber, Gerard A1 - Waldenberger, Melanie A1 - Wallentin, Lars A1 - Wang, Ya Xing A1 - Wang, Chaolong A1 - Waterworth, Dawn M. A1 - Bin Wei, Wen A1 - White, Harvey A1 - Whitfield, John B. A1 - Wild, Sarah H. A1 - Wilson, James F. A1 - Wojczynski, Mary K. A1 - Wong, Charlene A1 - Wong, Tien-Yin A1 - Xu, Liang A1 - Yang, Qiong A1 - Yasuda, Masayuki A1 - Yerges-Armstrong, Laura M. A1 - Zhang, Weihua A1 - Zonderman, Alan B. A1 - Rotter, Jerome I. A1 - Bochud, Murielle A1 - Psaty, Bruce M. A1 - Vitart, Veronique A1 - Wilson, James G. A1 - Dehghan, Abbas A1 - Parsa, Afshin A1 - Chasman, Daniel I. A1 - Ho, Kevin A1 - Morris, Andrew P. A1 - Devuyst, Olivier A1 - Akilesh, Shreeram A1 - Pendergrass, Sarah A. A1 - Sim, Xueling A1 - Boger, Carsten A. A1 - Okada, Yukinori A1 - Edwards, Todd L. A1 - Snieder, Harold A1 - Stefansson, Kari A1 - Hung, Adriana M. A1 - Heid, Iris M. A1 - Scholz, Markus A1 - Teumer, Alexander A1 - Kottgen, Anna A1 - Pattaro, Cristian T1 - A catalog of genetic loci associated with kidney function from analyses of a million individuals JF - Nature genetics N2 - Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research. Y1 - 2019 U6 - https://doi.org/10.1038/s41588-019-0407-x SN - 1061-4036 SN - 1546-1718 VL - 51 IS - 6 SP - 957 EP - + PB - Nature Publ. Group CY - New York ER - TY - GEN A1 - Gorski, Mathias A1 - Jung, Bettina A1 - Li, Yong A1 - Matias-Garcia, Pamela R. A1 - Wuttke, Matthias A1 - Coassin, Stefan A1 - Thio, Chris H. L. A1 - Kleber, Marcus E. A1 - Winkler, Thomas W. A1 - Wanner, Veronika A1 - Chai, Jin-Fang A1 - Chu, Audrey Y. A1 - Cocca, Massimiliano A1 - Feitosa, Mary F. A1 - Ghasemi, Sahar A1 - Hoppmann, Anselm A1 - Horn, Katrin A1 - Li, Man A1 - Nutile, Teresa A1 - Scholz, Markus A1 - Sieber, Karsten B. A1 - Teumer, Alexander A1 - Tin, Adrienne A1 - Wang, Judy A1 - Tayo, Bamidele O. A1 - Ahluwalia, Tarunveer S. A1 - Almgren, Peter A1 - Bakker, Stephan J. L. A1 - Banas, Bernhard A1 - Bansal, Nisha A1 - Biggs, Mary L. A1 - Boerwinkle, Eric A1 - Böttinger, Erwin A1 - Brenner, Hermann A1 - Carroll, Robert J. A1 - Chalmers, John A1 - Chee, Miao-Li A1 - Chee, Miao-Ling A1 - Cheng, Ching-Yu A1 - Coresh, Josef A1 - de Borst, Martin H. A1 - Degenhardt, Frauke A1 - Eckardt, Kai-Uwe A1 - Endlich, Karlhans A1 - Franke, Andre A1 - Freitag-Wolf, Sandra A1 - Gampawar, Piyush A1 - Gansevoort, Ron T. A1 - Ghanbari, Mohsen A1 - Gieger, Christian A1 - Hamet, Pavel A1 - Ho, Kevin A1 - Hofer, Edith A1 - Holleczek, Bernd A1 - Foo, Valencia Hui Xian A1 - Hutri-Kahonen, Nina A1 - Hwang, Shih-Jen A1 - Ikram, M. Arfan A1 - Josyula, Navya Shilpa A1 - Kahonen, Mika A1 - Khor, Chiea-Chuen A1 - Koenig, Wolfgang A1 - Kramer, Holly A1 - Kraemer, Bernhard K. A1 - Kuehnel, Brigitte A1 - Lange, Leslie A. A1 - Lehtimaki, Terho A1 - Lieb, Wolfgang A1 - Loos, Ruth J. F. A1 - Lukas, Mary Ann A1 - Lyytikainen, Leo-Pekka A1 - Meisinger, Christa A1 - Meitinger, Thomas A1 - Melander, Olle A1 - Milaneschi, Yuri A1 - Mishra, Pashupati P. A1 - Mononen, Nina A1 - Mychaleckyj, Josyf C. A1 - Nadkarni, Girish N. A1 - Nauck, Matthias A1 - Nikus, Kjell A1 - Ning, Boting A1 - Nolte, Ilja M. A1 - O'Donoghue, Michelle L. A1 - Orho-Melander, Marju A1 - Pendergrass, Sarah A. A1 - Penninx, Brenda W. J. H. A1 - Preuss, Michael H. A1 - Psaty, Bruce M. A1 - Raffield, Laura M. A1 - Raitakari, Olli T. A1 - Rettig, Rainer A1 - Rheinberger, Myriam A1 - Rice, Kenneth M. A1 - Rosenkranz, Alexander R. A1 - Rossing, Peter A1 - Rotter, Jerome A1 - Sabanayagam, Charumathi A1 - Schmidt, Helena A1 - Schmidt, Reinhold A1 - Schoettker, Ben A1 - Schulz, Christina-Alexandra A1 - Sedaghat, Sanaz A1 - Shaffer, Christian M. A1 - Strauch, Konstantin A1 - Szymczak, Silke A1 - Taylor, Kent D. A1 - Tremblay, Johanne A1 - Chaker, Layal A1 - van der Harst, Pim A1 - van der Most, Peter J. A1 - Verweij, Niek A1 - Voelker, Uwe A1 - Waldenberger, Melanie A1 - Wallentin, Lars A1 - Waterworth, Dawn M. A1 - White, Harvey D. A1 - Wilson, James G. A1 - Wong, Tien-Yin A1 - Woodward, Mark A1 - Yang, Qiong A1 - Yasuda, Masayuki A1 - Yerges-Armstrong, Laura M. A1 - Zhang, Yan A1 - Snieder, Harold A1 - Wanner, Christoph A1 - Boger, Carsten A. A1 - Kottgen, Anna A1 - Kronenberg, Florian A1 - Pattaro, Cristian A1 - Heid, Iris M. T1 - Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline T2 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 19 KW - acute kidney injury KW - end-stage kidney disease KW - genome-wide association KW - study KW - rapid eGFRcrea decline Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-565379 IS - 19 ER - TY - JOUR A1 - Gorski, Mathias A1 - Jung, Bettina A1 - Li, Yong A1 - Matias-Garcia, Pamela R. A1 - Wuttke, Matthias A1 - Coassin, Stefan A1 - Thio, Chris H. L. A1 - Kleber, Marcus E. A1 - Winkler, Thomas W. A1 - Wanner, Veronika A1 - Chai, Jin-Fang A1 - Chu, Audrey Y. A1 - Cocca, Massimiliano A1 - Feitosa, Mary F. A1 - Ghasemi, Sahar A1 - Hoppmann, Anselm A1 - Horn, Katrin A1 - Li, Man A1 - Nutile, Teresa A1 - Scholz, Markus A1 - Sieber, Karsten B. A1 - Teumer, Alexander A1 - Tin, Adrienne A1 - Wang, Judy A1 - Tayo, Bamidele O. A1 - Ahluwalia, Tarunveer S. A1 - Almgren, Peter A1 - Bakker, Stephan J. L. A1 - Banas, Bernhard A1 - Bansal, Nisha A1 - Biggs, Mary L. A1 - Boerwinkle, Eric A1 - Böttinger, Erwin A1 - Brenner, Hermann A1 - Carroll, Robert J. A1 - Chalmers, John A1 - Chee, Miao-Li A1 - Chee, Miao-Ling A1 - Cheng, Ching-Yu A1 - Coresh, Josef A1 - de Borst, Martin H. A1 - Degenhardt, Frauke A1 - Eckardt, Kai-Uwe A1 - Endlich, Karlhans A1 - Franke, Andre A1 - Freitag-Wolf, Sandra A1 - Gampawar, Piyush A1 - Gansevoort, Ron T. A1 - Ghanbari, Mohsen A1 - Gieger, Christian A1 - Hamet, Pavel A1 - Ho, Kevin A1 - Hofer, Edith A1 - Holleczek, Bernd A1 - Foo, Valencia Hui Xian A1 - Hutri-Kahonen, Nina A1 - Hwang, Shih-Jen A1 - Ikram, M. Arfan A1 - Josyula, Navya Shilpa A1 - Kahonen, Mika A1 - Khor, Chiea-Chuen A1 - Koenig, Wolfgang A1 - Kramer, Holly A1 - Kraemer, Bernhard K. A1 - Kuehnel, Brigitte A1 - Lange, Leslie A. A1 - Lehtimaki, Terho A1 - Lieb, Wolfgang A1 - Loos, Ruth J. F. A1 - Lukas, Mary Ann A1 - Lyytikainen, Leo-Pekka A1 - Meisinger, Christa A1 - Meitinger, Thomas A1 - Melander, Olle A1 - Milaneschi, Yuri A1 - Mishra, Pashupati P. A1 - Mononen, Nina A1 - Mychaleckyj, Josyf C. A1 - Nadkarni, Girish N. A1 - Nauck, Matthias A1 - Nikus, Kjell A1 - Ning, Boting A1 - Nolte, Ilja M. A1 - O'Donoghue, Michelle L. A1 - Orho-Melander, Marju A1 - Pendergrass, Sarah A. A1 - Penninx, Brenda W. J. H. A1 - Preuss, Michael H. A1 - Psaty, Bruce M. A1 - Raffield, Laura M. A1 - Raitakari, Olli T. A1 - Rettig, Rainer A1 - Rheinberger, Myriam A1 - Rice, Kenneth M. A1 - Rosenkranz, Alexander R. A1 - Rossing, Peter A1 - Rotter, Jerome A1 - Sabanayagam, Charumathi A1 - Schmidt, Helena A1 - Schmidt, Reinhold A1 - Schoettker, Ben A1 - Schulz, Christina-Alexandra A1 - Sedaghat, Sanaz A1 - Shaffer, Christian M. A1 - Strauch, Konstantin A1 - Szymczak, Silke A1 - Taylor, Kent D. A1 - Tremblay, Johanne A1 - Chaker, Layal A1 - van der Harst, Pim A1 - van der Most, Peter J. A1 - Verweij, Niek A1 - Voelker, Uwe A1 - Waldenberger, Melanie A1 - Wallentin, Lars A1 - Waterworth, Dawn M. A1 - White, Harvey D. A1 - Wilson, James G. A1 - Wong, Tien-Yin A1 - Woodward, Mark A1 - Yang, Qiong A1 - Yasuda, Masayuki A1 - Yerges-Armstrong, Laura M. A1 - Zhang, Yan A1 - Snieder, Harold A1 - Wanner, Christoph A1 - Boger, Carsten A. A1 - Kottgen, Anna A1 - Kronenberg, Florian A1 - Pattaro, Cristian A1 - Heid, Iris M. T1 - Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline JF - Kidney international : official journal of the International Society of Nephrology N2 - Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function. KW - acute kidney injury KW - end-stage kidney disease KW - genome-wide association KW - study KW - rapid eGFRcrea decline Y1 - 2020 U6 - https://doi.org/10.1016/j.kint.2020.09.030 SN - 0085-2538 SN - 1523-1755 VL - 99 IS - 4 SP - 926 EP - 939 PB - Elsevier CY - New York ER - TY - JOUR A1 - Aarts, Alexander A. A1 - Anderson, Joanna E. A1 - Anderson, Christopher J. A1 - Attridge, Peter R. A1 - Attwood, Angela A1 - Axt, Jordan A1 - Babel, Molly A1 - Bahnik, Stepan A1 - Baranski, Erica A1 - Barnett-Cowan, Michael A1 - Bartmess, Elizabeth A1 - Beer, Jennifer A1 - Bell, Raoul A1 - Bentley, Heather A1 - Beyan, Leah A1 - Binion, Grace A1 - Borsboom, Denny A1 - Bosch, Annick A1 - Bosco, Frank A. A1 - Bowman, Sara D. A1 - Brandt, Mark J. A1 - Braswell, Erin A1 - Brohmer, Hilmar A1 - Brown, Benjamin T. A1 - Brown, Kristina A1 - Bruening, Jovita A1 - Calhoun-Sauls, Ann A1 - Callahan, Shannon P. A1 - Chagnon, Elizabeth A1 - Chandler, Jesse A1 - Chartier, Christopher R. A1 - Cheung, Felix A1 - Christopherson, Cody D. A1 - Cillessen, Linda A1 - Clay, Russ A1 - Cleary, Hayley A1 - Cloud, Mark D. A1 - Cohn, Michael A1 - Cohoon, Johanna A1 - Columbus, Simon A1 - Cordes, Andreas A1 - Costantini, Giulio A1 - Alvarez, Leslie D. Cramblet A1 - Cremata, Ed A1 - Crusius, Jan A1 - DeCoster, Jamie A1 - DeGaetano, Michelle A. A1 - Della Penna, Nicolas A1 - den Bezemer, Bobby A1 - Deserno, Marie K. A1 - Devitt, Olivia A1 - Dewitte, Laura A1 - Dobolyi, David G. A1 - Dodson, Geneva T. A1 - Donnellan, M. Brent A1 - Donohue, Ryan A1 - Dore, Rebecca A. A1 - Dorrough, Angela A1 - Dreber, Anna A1 - Dugas, Michelle A1 - Dunn, Elizabeth W. A1 - Easey, Kayleigh A1 - Eboigbe, Sylvia A1 - Eggleston, Casey A1 - Embley, Jo A1 - Epskamp, Sacha A1 - Errington, Timothy M. A1 - Estel, Vivien A1 - Farach, Frank J. A1 - Feather, Jenelle A1 - Fedor, Anna A1 - Fernandez-Castilla, Belen A1 - Fiedler, Susann A1 - Field, James G. A1 - Fitneva, Stanka A. A1 - Flagan, Taru A1 - Forest, Amanda L. A1 - Forsell, Eskil A1 - Foster, Joshua D. A1 - Frank, Michael C. A1 - Frazier, Rebecca S. A1 - Fuchs, Heather A1 - Gable, Philip A1 - Galak, Jeff A1 - Galliani, Elisa Maria A1 - Gampa, Anup A1 - Garcia, Sara A1 - Gazarian, Douglas A1 - Gilbert, Elizabeth A1 - Giner-Sorolla, Roger A1 - Glöckner, Andreas A1 - Göllner, Lars A1 - Goh, Jin X. A1 - Goldberg, Rebecca A1 - Goodbourn, Patrick T. A1 - Gordon-McKeon, Shauna A1 - Gorges, Bryan A1 - Gorges, Jessie A1 - Goss, Justin A1 - Graham, Jesse A1 - Grange, James A. A1 - Gray, Jeremy A1 - Hartgerink, Chris A1 - Hartshorne, Joshua A1 - Hasselman, Fred A1 - Hayes, Timothy A1 - Heikensten, Emma A1 - Henninger, Felix A1 - Hodsoll, John A1 - Holubar, Taylor A1 - Hoogendoorn, Gea A1 - Humphries, Denise J. A1 - Hung, Cathy O. -Y. A1 - Immelman, Nathali A1 - Irsik, Vanessa C. A1 - Jahn, Georg A1 - Jaekel, Frank A1 - Jekel, Marc A1 - Johannesson, Magnus A1 - Johnson, Larissa G. A1 - Johnson, David J. A1 - Johnson, Kate M. A1 - Johnston, William J. A1 - Jonas, Kai A1 - Joy-Gaba, Jennifer A. A1 - Kappes, Heather Barry A1 - Kelso, Kim A1 - Kidwell, Mallory C. A1 - Kim, Seung Kyung A1 - Kirkhart, Matthew A1 - Kleinberg, Bennett A1 - Knezevic, Goran A1 - Kolorz, Franziska Maria A1 - Kossakowski, Jolanda J. A1 - Krause, Robert Wilhelm A1 - Krijnen, Job A1 - Kuhlmann, Tim A1 - Kunkels, Yoram K. A1 - Kyc, Megan M. A1 - Lai, Calvin K. A1 - Laique, Aamir A1 - Lakens, Daniel A1 - Lane, Kristin A. A1 - Lassetter, Bethany A1 - Lazarevic, Ljiljana B. A1 - LeBel, Etienne P. A1 - Lee, Key Jung A1 - Lee, Minha A1 - Lemm, Kristi A1 - Levitan, Carmel A. A1 - Lewis, Melissa A1 - Lin, Lin A1 - Lin, Stephanie A1 - Lippold, Matthias A1 - Loureiro, Darren A1 - Luteijn, Ilse A1 - Mackinnon, Sean A1 - Mainard, Heather N. A1 - Marigold, Denise C. A1 - Martin, Daniel P. A1 - Martinez, Tylar A1 - Masicampo, E. J. A1 - Matacotta, Josh A1 - Mathur, Maya A1 - May, Michael A1 - Mechin, Nicole A1 - Mehta, Pranjal A1 - Meixner, Johannes A1 - Melinger, Alissa A1 - Miller, Jeremy K. A1 - Miller, Mallorie A1 - Moore, Katherine A1 - Möschl, Marcus A1 - Motyl, Matt A1 - Müller, Stephanie M. A1 - Munafo, Marcus A1 - Neijenhuijs, Koen I. A1 - Nervi, Taylor A1 - Nicolas, Gandalf A1 - Nilsonne, Gustav A1 - Nosek, Brian A. A1 - Nuijten, Michele B. A1 - Olsson, Catherine A1 - Osborne, Colleen A1 - Ostkamp, Lutz A1 - Pavel, Misha A1 - Penton-Voak, Ian S. A1 - Perna, Olivia A1 - Pernet, Cyril A1 - Perugini, Marco A1 - Pipitone, R. Nathan A1 - Pitts, Michael A1 - Plessow, Franziska A1 - Prenoveau, Jason M. A1 - Rahal, Rima-Maria A1 - Ratliff, Kate A. A1 - Reinhard, David A1 - Renkewitz, Frank A1 - Ricker, Ashley A. A1 - Rigney, Anastasia A1 - Rivers, Andrew M. A1 - Roebke, Mark A1 - Rutchick, Abraham M. A1 - Ryan, Robert S. A1 - Sahin, Onur A1 - Saide, Anondah A1 - Sandstrom, Gillian M. A1 - Santos, David A1 - Saxe, Rebecca A1 - Schlegelmilch, Rene A1 - Schmidt, Kathleen A1 - Scholz, Sabine A1 - Seibel, Larissa A1 - Selterman, Dylan Faulkner A1 - Shaki, Samuel A1 - Simpson, William B. A1 - Sinclair, H. Colleen A1 - Skorinko, Jeanine L. M. A1 - Slowik, Agnieszka A1 - Snyder, Joel S. A1 - Soderberg, Courtney A1 - Sonnleitner, Carina A1 - Spencer, Nick A1 - Spies, Jeffrey R. A1 - Steegen, Sara A1 - Stieger, Stefan A1 - Strohminger, Nina A1 - Sullivan, Gavin B. A1 - Talhelm, Thomas A1 - Tapia, Megan A1 - te Dorsthorst, Anniek A1 - Thomae, Manuela A1 - Thomas, Sarah L. A1 - Tio, Pia A1 - Traets, Frits A1 - Tsang, Steve A1 - Tuerlinckx, Francis A1 - Turchan, Paul A1 - Valasek, Milan A1 - Van Aert, Robbie A1 - van Assen, Marcel A1 - van Bork, Riet A1 - van de Ven, Mathijs A1 - van den Bergh, Don A1 - van der Hulst, Marije A1 - van Dooren, Roel A1 - van Doorn, Johnny A1 - van Renswoude, Daan R. A1 - van Rijn, Hedderik A1 - Vanpaemel, Wolf A1 - Echeverria, Alejandro Vasquez A1 - Vazquez, Melissa A1 - Velez, Natalia A1 - Vermue, Marieke A1 - Verschoor, Mark A1 - Vianello, Michelangelo A1 - Voracek, Martin A1 - Vuu, Gina A1 - Wagenmakers, Eric-Jan A1 - Weerdmeester, Joanneke A1 - Welsh, Ashlee A1 - Westgate, Erin C. A1 - Wissink, Joeri A1 - Wood, Michael A1 - Woods, Andy A1 - Wright, Emily A1 - Wu, Sining A1 - Zeelenberg, Marcel A1 - Zuni, Kellylynn T1 - Estimating the reproducibility of psychological science JF - Science N2 - Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47% of original effect sizes were in the 95% confidence interval of the replication effect size; 39% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams. Y1 - 2015 U6 - https://doi.org/10.1126/science.aac4716 SN - 1095-9203 SN - 0036-8075 VL - 349 IS - 6251 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - de Jong, S. A1 - Kukreja, R. A1 - Trabant, C. A1 - Pontius, N. A1 - Chang, C. F. A1 - Kachel, T. A1 - Beye, Martin A1 - Sorgenfrei, Nomi A1 - Back, C. H. A1 - Braeuer, B. A1 - Schlotter, W. F. A1 - Turner, J. J. A1 - Krupin, O. A1 - Doehler, M. A1 - Zhu, D. A1 - Hossain, M. A. A1 - Scherz, A. O. A1 - Fausti, D. A1 - Novelli, F. A1 - Esposito, M. A1 - Lee, W. S. A1 - Chuang, Y. D. A1 - Lu, D. H. A1 - Moore, R. G. A1 - Yi, M. A1 - Trigo, M. A1 - Kirchmann, P. A1 - Pathey, L. A1 - Golden, M. S. A1 - Buchholz, Marcel A1 - Metcalf, P. A1 - Parmigiani, F. A1 - Wurth, W. A1 - Föhlisch, Alexander A1 - Schuessler-Langeheine, Christian A1 - Duerr, H. A. T1 - Speed limit of the insulator-metal transition in magnetite JF - Nature materials N2 - As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown(1), magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible(2-8). Recently, three- Fe- site lattice distortions called trimeronswere identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase(9). Here we investigate the Verwey transition with pump- probe X- ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two- step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5 +/- 0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics(10). Y1 - 2013 U6 - https://doi.org/10.1038/NMAT3718 SN - 1476-1122 SN - 1476-4660 VL - 12 IS - 10 SP - 882 EP - 886 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Schulze, Patricia S. C. A1 - Bett, Alexander J. A1 - Bivour, Martin A1 - Caprioglio, Pietro A1 - Gerspacher, Fabian M. A1 - Kabaklı, Özde Ş. A1 - Richter, Armin A1 - Stolterfoht, Martin A1 - Zhang, Qinxin A1 - Neher, Dieter A1 - Hermle, Martin A1 - Hillebrecht, Harald A1 - Glunz, Stefan W. A1 - Goldschmidt, Jan Christoph T1 - 25.1% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1197 KW - heterojunction silicon solar cells KW - interfaces KW - perovskite solar cells KW - tandem solar cells KW - thin films Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525668 SN - 1866-8372 IS - 7 ER - TY - JOUR A1 - Schulze, Patricia S. C. A1 - Bett, Alexander J. A1 - Bivour, Martin A1 - Caprioglio, Pietro A1 - Gerspacher, Fabian M. A1 - Kabaklı, Özde Ş. A1 - Richter, Armin A1 - Stolterfoht, Martin A1 - Zhang, Qinxin A1 - Neher, Dieter A1 - Hermle, Martin A1 - Hillebrecht, Harald A1 - Glunz, Stefan W. A1 - Goldschmidt, Jan Christoph T1 - 25.1% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber JF - Solar RRL N2 - Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future. KW - heterojunction silicon solar cells KW - interfaces KW - perovskite solar cells KW - tandem solar cells KW - thin films Y1 - 2020 VL - 4 IS - 7 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Ostrom, H. A1 - Oberg, H. A1 - Xin, H. A1 - Larue, J. A1 - Beye, Martin A1 - Gladh, J. A1 - Ng, M. L. A1 - Sellberg, J. A. A1 - Kaya, S. A1 - Mercurio, G. A1 - Nordlund, D. A1 - Hantschmann, Markus A1 - Hieke, F. A1 - Kuehn, D. A1 - Schlotter, W. F. A1 - Dakovski, G. L. A1 - Turner, J. J. A1 - Minitti, M. P. A1 - Mitra, A. A1 - Moeller, S. P. A1 - Föhlisch, Alexander A1 - Wolf, M. A1 - Wurth, W. A1 - Persson, Mats A1 - Norskov, J. K. A1 - Abild-Pedersen, Frank A1 - Ogasawara, Hirohito A1 - Pettersson, Lars G. M. A1 - Nilsson, A. T1 - Probing the transition state region in catalytic CO oxidation on Ru JF - Science N2 - Femtosecond x-ray laser pulses are used to probe the carbon monoxide (CO) oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and oxygen (O) on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the OK-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC-O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model. Y1 - 2015 U6 - https://doi.org/10.1126/science.1261747 SN - 0036-8075 SN - 1095-9203 VL - 347 IS - 6225 SP - 978 EP - 982 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Sechi, Antonio A1 - Freitas, Joana M. G. A1 - Wünnemann, Patrick A1 - Töpel, Alexander A1 - Paschoalin, Rafaella Takehara A1 - Ullmann, Sabrina A1 - Schröder, Ricarda A1 - Aydin, Gülcan A1 - Rütten, Stephan A1 - Böker, Alexander A1 - Zenke, Martin A1 - Pich, Andrij T1 - Surface-Grafted Nanogel Arrays Direct Cell Adhesion and Motility JF - Advanced materials interfaces N2 - It has long been appreciated that material chemistry and topology profoundly affect cell adhesion and migration. Here, aqueous poly(N- isopropyl acrylamide) nanogels are designed, synthesized and printed in form of colloidal arrays on glass substrates using wrinkled polydimethylsiloxane templates. Using low-temperature plasma treatment, nanogels are chemically grafted onto glass supports thus leading to highly stable nanogel layers in cell culture media. Liquid cell atomic force microscopy investigations show that surface-grafted nanogels retain their swelling behavior in aqueous media and that extracellular matrix protein coating do not alter their stability and topography. It is demonstrated that surface-grafted nanogels could serve as novel substrates for the analysis of cell adhesion and migration. Nanogels influence size, speed, and dynamics of focal adhesions and cell motility forcing cells to move along highly directional trajectories. Moreover, modulation of nanogel state or spacing serves as an effective tool for regulation of cell motility. It is suggested that nanogel arrays deposited on solid surfaces could be used to provide a precise and tunable system to understand and control cell migration. Additionally, such nanogel arrays will contribute to the development of implantable systems aimed at supporting and enhancing cell migration during, for instance, wound healing and tissue regeneration. Y1 - 2016 U6 - https://doi.org/10.1002/admi.201600455 SN - 2196-7350 VL - 3 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Dell'Angela, M. A1 - Anniyev, Toyli A1 - Beye, Martin A1 - Coffee, Ryan A1 - Föhlisch, Alexander A1 - Gladh, J. A1 - Katayama, T. A1 - Kaya, S. A1 - Krupin, O. A1 - LaRue, J. A1 - Mogelhoj, A. A1 - Nordlund, D. A1 - Norskov, J. K. A1 - Oberg, H. A1 - Ogasawara, H. A1 - Ostrom, H. A1 - Pettersson, Lars G. M. A1 - Schlotter, W. F. A1 - Sellberg, J. A. A1 - Sorgenfrei, Nomi A1 - Turner, J. J. A1 - Wolf, M. A1 - Wurth, W. A1 - Nilsson, A. T1 - Real-time observation of surface bond breaking with an X-ray Laser JF - Science N2 - We used the Linac Coherent Light Source free-electron x-ray laser to probe the electronic structure of CO molecules as their chemisorption state on Ru(0001) changes upon exciting the substrate by using a femtosecond optical laser pulse. We observed electronic structure changes that are consistent with a weakening of the CO interaction with the substrate but without notable desorption. A large fraction of the molecules (30%) was trapped in a transient precursor state that would precede desorption. We calculated the free energy of the molecule as a function of the desorption reaction coordinate using density functional theory, including van der Waals interactions. Two distinct adsorption wells-chemisorbed and precursor state separated by an entropy barrier-explain the anomalously high prefactors often observed in desorption of molecules from metals. Y1 - 2013 U6 - https://doi.org/10.1126/science.1231711 SN - 0036-8075 VL - 339 IS - 6125 SP - 1302 EP - 1305 PB - American Assoc. for the Advancement of Science CY - Washington ER -