TY - JOUR A1 - Chen, Zupeng A1 - Savateev, Aleksandr A1 - Pronkin, Sergey A1 - Papaefthimiou, Vasiliki A1 - Wolff, Christian Michael A1 - Willinger, Marc Georg A1 - Willinger, Elena A1 - Neher, Dieter A1 - Antonietti, Markus A1 - Dontsova, Dariya T1 - "The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts JF - Advanced materials N2 - Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photo-catalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger. KW - carbon nitride KW - glycerol oxidation KW - mesocrystals KW - poly(heptazine imide) KW - water reduction reactions Y1 - 2017 U6 - https://doi.org/10.1002/adma.201700555 SN - 0935-9648 SN - 1521-4095 VL - 29 SP - 21800 EP - 21806 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Walczak, Ralf A1 - Savateev, Aleksandr A1 - Heske, Julian A1 - Tarakina, Nadezda V. A1 - Sahoo, Sudhir A1 - Epping, Jan D. A1 - Kuehne, Thomas D. A1 - Kurpil, Bogdan A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Controlling the strength of interaction between carbon dioxide and nitrogen-rich carbon materials by molecular design JF - Sustainable energy & fuels N2 - Thermal treatment of hexaazatriphenylene-hexacarbonitrile (HAT-CN) in the temperature range from 500 degrees C to 700 degrees C leads to precise control over the degree of condensation, and thus atomic construction and porosity of the resulting C2N-type materials. Depending on the condensation temperature of HAT-CN, nitrogen contents of more than 30 at% can be reached. In general, these carbons show adsorption properties which are comparable to those known for zeolites but their pore size can be adjusted over a wider range. At condensation temperatures of 525 degrees C and below, the uptake of nitrogen gas remains negligible due to size exclusion, but the internal pores are large and polarizing enough that CO2 can still adsorb on part of the internal surface. This leads to surprisingly high CO2 adsorption capacities and isosteric heat of adsorption of up to 52 kJ mol(-1). Theoretical calculations show that this high binding enthalpy arises from collective stabilization effects from the nitrogen atoms in the C2N layers surrounding the carbon atom in the CO2 molecule and from the electron acceptor properties of the carbon atoms from C2N which are in close proximity to the oxygen atoms in CO2. A true CO2 molecular sieving effect is achieved for the first time in such a metal-free organic material with zeolite-like properties, showing an IAST CO2/N-2 selectivity of up to 121 at 298 K and a N-2/CO2 ratio of 90/10 without notable changes in the CO2 adsorption properities over 80 cycles. Y1 - 2019 U6 - https://doi.org/10.1039/c9se00486f SN - 2398-4902 VL - 3 IS - 10 SP - 2819 EP - 2827 PB - Royal Society of Chemistry CY - Cambridge ER -