TY - JOUR A1 - Peres, Tanara Vieira A1 - Arantes, Leticia P. A1 - Miah, Mahfuzur R. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Bowman, Aaron B. A1 - Leal, Rodrigo B. A1 - Aschner, Michael T1 - Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity JF - Neurotoxicity Research N2 - Excessive levels of the essential metal manganese (Mn) may cause a syndrome similar to Parkinson’s disease. The model organism Caenorhabditis elegans mimics some of Mn effects in mammals, including dopaminergic neurodegeneration, oxidative stress, and increased levels of AKT. The evolutionarily conserved insulin/insulin-like growth factor-1 signaling pathway (IIS) modulates worm longevity, metabolism, and antioxidant responses by antagonizing the transcription factors DAF-16/FOXO and SKN-1/Nrf-2. AKT-1, AKT-2, and SGK-1 act upstream of these transcription factors. To study the role of these proteins in C. elegans response to Mn intoxication, wild-type N2 and loss-of-function mutants were exposed to Mn (2.5 to 100 mM) for 1 h at the L1 larval stage. Strains with loss-of-function in akt-1, akt-2, and sgk-1 had higher resistance to Mn compared to N2 in the survival test. All strains tested accumulated Mn similarly, as shown by ICP-MS. DAF-16 nuclear translocation was observed by fluorescence microscopy in WT and loss-of-function strains exposed to Mn. qRT-PCR data indicate increased expression of γ-glutamyl cysteine synthetase (GCS-1) antioxidant enzyme in akt-1 mutants. The expression of sod-3 (superoxide dismutase homologue) was increased in the akt-1 mutant worms, independent of Mn treatment. However, dopaminergic neurons degenerated even in the more resistant strains. Dopaminergic function was evaluated with the basal slowing response behavioral test and dopaminergic neuron integrity was evaluated using worms expressing green fluorescent protein (GFP) under the dopamine transporter (DAT-1) promoter. These results suggest that AKT-1/2 and SGK-1 play a role in C. elegans response to Mn intoxication. However, tissue-specific responses may occur in dopaminergic neurons, contributing to degeneration. KW - Manganese . C. elegans KW - Signaling pathways KW - DAF-16 KW - Akt/PKB KW - SGK-1 Y1 - 2018 U6 - https://doi.org/10.1007/s12640-018-9915-1 SN - 1029-8428 SN - 1476-3524 VL - 34 IS - 3 SP - 584 EP - 596 PB - Springer CY - New York ER - TY - JOUR A1 - Ruszkiewicz, Joanna A. A1 - de Macedo, Gabriel Teixeira A1 - Miranda-Vizuete, Antonio A1 - Teixeira da Rocha, Joao B. A1 - Bowman, Aaron B. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael T1 - The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner JF - Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system N2 - Methylmercury (MeHg) is an environmental pollutant linked to many neurological defects, especially in developing individuals. The thioredoxin (TRX) system is a key redox regulator affected by MeHg toxicity, however the mechanisms and consequences of MeHg-induced dysfunction are not completely understood. This study evaluated the role of the TRX system in C. elegans susceptibility to MeHg during development. Worms lacking or overexpressing proteins from the TRX family were exposed to MeHg for 1 h at different developmental stage: L1, L4 and adult. Worms without cytoplasmic thioredoxin system exhibited age-specific susceptibility to MeHg when compared to wild-type (wt). This susceptibility corresponded partially to decreased total glutathione (GSH) levels and enhanced degeneration of dopaminergic neurons. In contrast, the overexpression of the cytoplasmic system TRX-1/TRXR-1 did not provide substantial protection against MeHg. Moreover, transgenic worms exhibited decreased protein expression for cytoplasmic thioredoxin reductase (TRXR-1). Both mitochondrial thioredoxin system TRX-2/TRXR-2, as well as other thioredoxin-like proteins: TRX-3, TRX-4, TRX-5 did not show significant role in C. elegans resistance to MeHg. Based on the current findings, the cytoplasmic thioredoxin system TRX-1/TRXR-1 emerges as an important age-sensitive protectant against MeHg toxicity in C. elegans. KW - Methylmercury KW - Age KW - Development KW - C. elegans KW - Thioredoxin KW - Thioredoxin reductase Y1 - 2018 U6 - https://doi.org/10.1016/j.neuro.2018.08.007 SN - 0161-813X SN - 1872-9711 VL - 68 SP - 189 EP - 202 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ruszkiewicz, Joanna A. A1 - de Macedo, Gabriel Teixeira A1 - Miranda-Vizuete, Antonio A1 - Bowman, Aaron B. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Antunes Soares, Felix A. A1 - Aschner, Michael T1 - Sex-Specific response of caenorhabditis elegans to Methylmercury Toxicity JF - Neurotoxicity Research N2 - Methylmercury (MeHg), an abundant environmental pollutant, has long been known to adversely affect neurodevelopment in both animals and humans. Several reports from epidemiological studies, as well as experimental data indicate sex-specific susceptibility to this neurotoxicant; however, the molecular bases of this process are still not clear. In the present study, we used Caenorhabditis elegans (C. elegans), to investigate sex differences in response to MeHg toxicity during development. Worms at different developmental stage (L1, L4, and adult) were treated with MeHg for 1h. Lethality assays revealed that male worms exhibited significantly higher resistance to MeHg than hermaphrodites, when at L4 stage or adults. However, the number of worms with degenerated neurons was unaffected by MeHg, both in males and hermaphrodites. Lower susceptibility of males was not related to changes in mercury (Hg) accumulation, which was analogous for both wild-type (wt) and male-rich him-8 strain. Total glutathione (GSH) levels decreased upon MeHg in him-8, but not in wt. Moreover, the sex-dependent response of the cytoplasmic thioredoxin system was observedmales exhibited significantly higher expression of thioredoxin TRX-1, and thioredoxin reductase TRXR-1 expression was downregulated upon MeHg treatment only in hermaphrodites. These outcomes indicate that the redox status is an important contributor to sex-specific sensitivity to MeHg in C. elegans. KW - Methylmercury KW - Sex KW - Male KW - C KW - elegans KW - Antioxidant KW - Thioredoxin Y1 - 2019 U6 - https://doi.org/10.1007/s12640-018-9949-4 SN - 1029-8428 SN - 1476-3524 VL - 35 IS - 1 SP - 208 EP - 216 PB - Springer CY - New York ER - TY - JOUR A1 - Kumar, Kevin K. A1 - Goodwin, Cody R. A1 - Uhouse, Michael A. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - McLean, John A. A1 - Bowman, Aaron B. T1 - Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status JF - Metallomics N2 - Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity. KW - hallervorden-spatz-syndrome KW - mobility-mass spectrometry KW - energy-metabolism KW - coenzyme-a KW - model KW - neurotoxicity KW - glutathione KW - database KW - cells KW - neurodegeneration Y1 - 2015 U6 - https://doi.org/10.1039/C4MT00223G SN - 1756-591X SN - 1756-5901 VL - 7 SP - 363 EP - 370 PB - RSC Publ. CY - Cambridge ER - TY - GEN A1 - Chakraborty, Sudipta A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Bowman, Aaron B. A1 - Aschner, Michael A. T1 - Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C. elegans N2 - Overexposure to the essential metal manganese (Mn) can result in an irreversible condition known as manganism that shares similar pathophysiology with Parkinson's disease (PD), including dopaminergic (DAergic) cell loss that leads to motor and cognitive impairments. However, the mechanisms behind this neurotoxicity and its relationship with PD remain unclear. Many genes confer risk for autosomal recessive, early-onset PD, including the parkin/PARK2 gene that encodes for the E3 ubiquitin ligase Parkin. Using Caenorhabditis elegans (C. elegans) as an invertebrate model that conserves the DAergic system, we previously reported significantly increased Mn accumulation in pdr-1/parkin mutants compared to wildtype (WT) animals. For the current study, we hypothesize that this enhanced accumulation is due to alterations in Mn transport in the pdr-1 mutants. While no change in mRNA expression of the major Mn importer proteins (smf-1-3) was found in pdr-1 mutants, significant downregulation in mRNA levels of the putative Mn exporter ferroportin (fpn-1.1) was observed. Using a strain overexpressing fpn-1.1 in worms lacking pdr-1, we show evidence for attenuation of several endpoints of Mn-induced toxicity, including survival, metal accumulation, mitochondrial copy number and DAergic integrity, compared to pdr-1 mutants alone. These changes suggest a novel role of pdr-1 in modulating Mn export through altered transporter expression, and provides further support of metal dyshomeostasis as a component of Parkinsonism pathophysiology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 290 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99508 ER - TY - GEN A1 - Kumar, Kevin K. A1 - Goodwin, Cody R. A1 - Uhouse, Michael A. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - McLean, John A. A1 - Bowman, Aaron B. T1 - Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status N2 - Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 232 KW - cells KW - coenzyme-a KW - database KW - energy-metabolism KW - glutathione KW - hallervorden-spatz-syndrome KW - mobility-mass spectrometry KW - model KW - neurodegeneration KW - neurotoxicity Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94314 SP - 363 EP - 370 ER - TY - JOUR A1 - Chakraborty, Sudipta A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Bowman, Aaron B. A1 - Aschner, Michael A. T1 - Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C-elegans JF - Metallomics : integrated biometal science Y1 - 2015 U6 - https://doi.org/10.1039/c5mt00052a SN - 1756-5901 SN - 1756-591X VL - 7 IS - 5 SP - 847 EP - 856 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Chen, Pan A1 - DeWitt, Margaret R. A1 - Bornhorst, Julia A1 - Soares, Felix A. A1 - Mukhopadhyay, Somshuvra A1 - Bowman, Aaron B. A1 - Aschner, Michael A. T1 - Age- and manganese-dependent modulation of dopaminergic phenotypes in a JF - Metallomics : integrated biometal science Y1 - 2015 U6 - https://doi.org/10.1039/c4mt00292j SN - 1756-5901 SN - 1756-591X VL - 7 IS - 2 SP - 289 EP - 298 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Peres, Tanara V. A1 - Horning, Kyle J. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Bowman, Aaron B. A1 - Aschner, Michael T1 - Small Molecule Modifiers of In Vitro Manganese Transport Alter Toxicity In Vivo JF - Biological Trace Element Research N2 - Manganese (Mn) is essential for several species and daily requirements are commonly met by an adequate diet. Mn overload may cause motor and psychiatric disturbances and may arise from an impaired or not fully developed excretion system, transporter malfunction and/or exposure to excessive levels of Mn. Therefore, deciphering processes regulating neuronal Mn homeostasis is essential to understand the mechanisms of Mn neurotoxicity. In the present study, we selected two small molecules (with opposing effects on Mn transport) from a previous high throughput screen of 40,167 to test their effects on Mn toxicity parameters in vivo using Caenorhabditis elegans. We pre-exposed worms to VU0063088 and VU0026921 for 30min followed by co-exposure for 1h with Mn and evaluated Mn accumulation, dopaminergic (DAergic) degeneration and worm survival. Control worms were exposed to vehicle (DMSO) and saline only. In pdat-1::GFP worms, with GFP labeled DAergic neurons, we observed a decrease of Mn-induced DAergic degeneration in the presence of both small molecules. This effect was also observed in an smf-2 knockout strain. SMF-2 is a regulator of Mn transport in the worms and this strain accumulates higher Mn levels. We did not observe improved survival in the presence of small molecules. Our results suggest that both VU0063088 and VU0026921 may modulate Mn levels in the worms through a mechanism that does not require SMF-2 and induce protection against Mn neurotoxicity. KW - Small molecules KW - Manganese KW - Neurotoxicity KW - C. elegans KW - Dopamine Y1 - 2018 U6 - https://doi.org/10.1007/s12011-018-1531-7 SN - 0163-4984 SN - 1559-0720 VL - 188 IS - 1 SP - 127 EP - 134 PB - Human press inc. CY - Totowa ER - TY - CHAP A1 - Tidball, Andrew M. A1 - Kumar, Kevin K. A1 - Bryan, Miles R. A1 - Bichell, Terry Jo A1 - Horning, Kyle A1 - Uhouse, Michael A. A1 - Goodwin, Cody R. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Neely, Maja Diana A1 - McClean, John A. A1 - Aschner, Michael A. A1 - Bowman, Aaron B. T1 - Deficits in neural responses to manganese exposure in Huntington's disease models T2 - Neurotoxicology and teratology Y1 - 2015 U6 - https://doi.org/10.1016/j.ntt.2015.04.022 SN - 0892-0362 SN - 1872-9738 VL - 49 SP - 105 EP - 105 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kumar, Kevin K. A1 - Goodwin, Cody R. A1 - Uhouse, Michael A. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - McLean, John A. A1 - Bowman, Aaron B. T1 - Untargeted metabolic profiling identifies interactions between JF - Metallomics : integrated biometal science Y1 - 2015 U6 - https://doi.org/10.1039/c4mt00223g SN - 1756-5901 SN - 1756-591X VL - 7 IS - 2 SP - 363 EP - 370 PB - Royal Society of Chemistry CY - Cambridge ER -