TY - JOUR A1 - Cohen, Andrew A1 - Campisano, C. A1 - Arrowsmith, J. Ramón A1 - Asrat, Asfawossen A1 - Behrensmeyer, A. K. A1 - Deino, A. A1 - Feibel, C. A1 - Hill, A. A1 - Johnson, R. A1 - Kingston, J. A1 - Lamb, Henry F. A1 - Lowenstein, T. A1 - Noren, A. A1 - Olago, D. A1 - Owen, R. B. A1 - Potts, R. A1 - Reed, Kate A1 - Renaut, R. A1 - Schäbitz, Frank A1 - Tiercelin, J. -J. A1 - Trauth, Martin H. A1 - Wynn, J. A1 - Ivory, S. A1 - Brady, K. A1 - Rodysill, J. A1 - Githiri, J. A1 - Russell, J. A1 - Förster, Verena A1 - Dommain, René A1 - Rucina, S. A1 - Deocampo, D. A1 - Russell, J. A1 - Billingsley, A. A1 - Beck, C. A1 - Dorenbeck, G. A1 - Dullo, L. A1 - Feary, D. A1 - Garello, D. A1 - Gromig, R. A1 - Johnson, T. A1 - Junginger, A. A1 - Karanja, M. A1 - Kimburi, E. A1 - Mbuthia, A. A1 - McCartney, T. A1 - McNulty, E. A1 - Muiruri, V. A1 - Nambiro, E. A1 - Negash, E. W. A1 - Njagi, D. A1 - Wilson, J. N. A1 - Rabideaux, N. A1 - Raub, T. A1 - Sier, M. J. A1 - Smith, P. A1 - Urban, J. A1 - Warren, M. A1 - Yadeta, M. A1 - Yost, C. A1 - Zinaye, B. T1 - The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits JF - Scientific Drilling N2 - The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign. Y1 - 2016 U6 - https://doi.org/10.5194/sd-21-1-2016 SN - 1816-8957 SN - 1816-3459 VL - 21 SP - 1 EP - 16 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Cohen, Abby A1 - Campisano, Christopher A1 - Arrowsmith, J. Ramon A1 - Asrat, Asfawossen A1 - Behrensmeyer, A. K. A1 - Deino, A. A1 - Feibel, C. A1 - Hill, A. A1 - Johnson, R. A1 - Kingston, J. A1 - Lamb, Henry F. A1 - Lowenstein, T. A1 - Noren, A. A1 - Olago, D. A1 - Owen, Richard Bernhart A1 - Potts, R. A1 - Reed, Kate A1 - Renaut, R. A1 - Schäbitz, Frank A1 - Tiercelin, J.-J. A1 - Trauth, Martin H. A1 - Wynn, J. A1 - Ivory, S. A1 - Brady, K. A1 - O’Grady, R. A1 - Rodysill, J. A1 - Githiri, J. A1 - Russell, Joellen A1 - Foerster, Verena A1 - Dommain, René A1 - Rucina, J. S. A1 - Deocampo, D. A1 - Russell, J. A1 - Billingsley, A. A1 - Beck, C. A1 - Dorenbeck, G. A1 - Dullo, L. A1 - Feary, D. A1 - Garello, D. A1 - Gromig, R. A1 - Johnson, T. A1 - Junginger, Annett A1 - Karanja, M. A1 - Kimburi, E. A1 - Mbuthia, A. A1 - McCartney, Tannis A1 - McNulty, E. A1 - Muiruri, V. A1 - Nambiro, E. A1 - Negash, E. W. A1 - Njagi, D. A1 - Wilson, J. N. A1 - Rabideaux, N. A1 - Raub, Timothy A1 - Sier, Mark Jan A1 - Smith, P. A1 - Urban, J. A1 - Warren, M. A1 - Yadeta, M. A1 - Yost, Chad A1 - Zinaye, B. T1 - The Hominin Sites and Paleolakes Drilling Project BT - inferring the environmental context of human evolution from eastern African rift lake deposits T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 611 KW - Turkana-Basin KW - Adar formation KW - climate-change KW - olorgesailie formation KW - Southern Ethiopia KW - global climate KW - Kenya Rift KW - Pleistocene KW - variability KW - patterns Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412498 IS - 611 ER - TY - JOUR A1 - van der Lubbe, H. J. L. A1 - Krause-Nehring, J. A1 - Junginger, A. A1 - Garcin, Yannick A1 - Joordens, J. C. A. A1 - Davies, G. R. A1 - Beck, C. A1 - Feibel, C. S. A1 - Johnson, T. C. A1 - Vonhof, H. B. T1 - Gradual or abrupt? Changes in water source of Lake Turkana (Kenya) during the African Humid Period inferred from Sr isotope ratios JF - Quaternary science reviews : the international multidisciplinary research and review journal Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2017.08.010 SN - 0277-3791 VL - 174 SP - 1 EP - 12 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Trauth, Martin H. A1 - Maslin, Mark A. A1 - Deino, Alan L. A1 - Junginger, Annett A1 - Lesoloyia, Moses A1 - Odada, Eric O. A1 - Olago, Daniel O. A1 - Olaka, Lydia A. A1 - Strecker, Manfred A1 - Tiedemann, Ralph T1 - Human evolution in a variable environment : the amplifier lakes of Eastern Africa N2 - The development of rise Cenozoic East African Rift System (EARS) profoundly re-shaped the landscape and significantly increased the amplitude of short-term environmental response to climate variation. In particular, the development of amplifier lakes in rift basins after three million years ago significantly contributed to this exceptional sensitivity of East Africa to climate change compared to elsewhere on the African continent. Amplifier lakes are characterized by tectonically-formed graben morphologies in combination with an extreme contrast between high precipitation in the elevated parts of the catchment and high evaporation in the lake area. Such amplifier lakes respond rapidly to moderate, precessional-forced climate shifts, and as they do so apply dramatic environmental pressure to the biosphere. Rift basins, when either extremely dry or lake-filled, form important barriers for migration, mixing and competition of different populations of animals and hominins. Amplifier lakes link long-term, high-amplitude tectonic processes and short-term environmental fluctuations. East Africa may have become the place where early humans evolved as a consequence of this strong link between different time scales. (C) 2010 Elsevier Ltd. All rights reserved. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/02773791 U6 - https://doi.org/10.1016/j.quascirev.2010.07.007 SN - 0277-3791 ER - TY - JOUR A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Junginger, Annett A1 - Olaka, Lydia A. A1 - Tiedemann, Ralph A1 - Trauth, Martin H. T1 - Environmental variability in Lake Naivasha, Kenya, over the last two centuries JF - Journal of paleolimnolog N2 - Lake Naivasha, Kenya, is one of a number of freshwater lakes in the East African Rift System. Since the beginning of the twentieth century, it has experienced greater anthropogenic influence as a result of increasingly intensive farming of coffee, tea, flowers, and other horticultural crops within its catchment. The water-level history of Lake Naivasha over the past 200 years was derived from a combination of instrumental records and sediment data. In this study, we analysed diatoms in a lake sediment core to infer past lacustrine conductivity and total phosphorus concentrations. We also measured total nitrogen and carbon concentrations in the sediments. Core chronology was established by (210)Pb dating and covered a similar to 186-year history of natural (climatic) and human-induced environmental changes. Three stratigraphic zones in the core were identified using diatom assemblages. There was a change from littoral/epiphytic diatoms such as Gomphonema gracile and Cymbella muelleri, which occurred during a prolonged dry period from ca. 1820 to 1896 AD, through a transition period, to the present planktonic Aulacoseira sp. that favors nutrient-rich waters. This marked change in the diatom assemblage was caused by climate change, and later a strong anthropogenic overprint on the lake system. Increases in sediment accumulation rates since 1928, from 0.01 to 0.08 g cm(-2) year(-1) correlate with an increase in diatom-inferred total phosphorus concentrations since the beginning of the twentieth century. The increase in phosphorus accumulation suggests increasing eutrophication of freshwater Lake Naivasha. This study identified two major periods in the lake's history: (1) the period from 1820 to 1950 AD, during which the lake was affected mainly by natural climate variations, and (2) the period since 1950, during which the effects of anthropogenic activity overprinted those of natural climate variation. KW - Lake sediments KW - Diatoms KW - Conductivity KW - Lake Naivasha KW - Human impact KW - Eutrophication Y1 - 2011 U6 - https://doi.org/10.1007/s10933-011-9502-4 SN - 0921-2728 VL - 45 IS - 3 SP - 353 EP - 367 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Junginger, Annett A1 - Roller, Sybille A1 - Olaka, Lydia A. A1 - Trauth, Martin H. T1 - The effects of solar irradiation changes on the migration of the Congo Air Boundary and water levels of paleo-Lake Suguta, Northern Kenya Rift, during the African Humid Period (15-5 ka BP) JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - The water-level record from the 300 m deep paleo-lake Suguta (Northern Kenya Rift) during the African Humid Period (AHP, 15-5 ka BP) helps to explain decadal to centennial intensity variations in the West African Monsoon (WAM) and the Indian Summer Monsoon (ISM). This water-level record was derived from three different sources: (1) grain size variations in radiocarbon dated and reservoir corrected lacustrine sediments, (2) the altitudes and ages of paleo-shorelines within the basin, and (3) the results of hydro-balance modeling, providing important insights into the character of water level variations (abrupt or gradual) in the amplifier paleo-Lake Suguta. The results of these comprehensive analyses suggest that the AHP highstand in the Suguta Valley was the direct consequence of a northeastwards shift in the Congo Air Boundary (CAB), which was in turn caused by an enhanced atmospheric pressure gradient between East Africa and India during a northern hemisphere insolation maximum. Rapidly decreasing water levels of up to 90 m over less than a hundred years are best explained by changes in solar irradiation either reducing the East African-Indian atmospheric pressure gradient and preventing the CAB from reaching the study area, or reducing the overall humidity in the atmosphere, or a combination of both these effects. In contrast, although not well documented in our record we hypothesize a gradual end of the AHP despite an abrupt change in the source of precipitation when a decreasing pressure gradient between Asia and Africa prevented the CAB from reaching the Suguta Valley. The abruptness was probably buffered by a contemporaneous change in precession producing an insolation maximum at the equator during October. Whether or not this is the case, the water-level record from the Suguta Valley demonstrates the importance of both orbitally-controlled insolation variations and short-term changes in solar irradiation as factors affecting the significant water level variations in East African rift lakes. KW - East African Rift System KW - Suguta Valley KW - African Humid Period KW - Congo Air Boundary Y1 - 2014 U6 - https://doi.org/10.1016/j.palaeo.2013.12.007 SN - 0031-0182 SN - 1872-616X VL - 396 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Foerster, Verena A1 - Deocampo, Daniel M. A1 - Asrat, Asfawossen A1 - Günter, Christina A1 - Junginger, Annett A1 - Krämer, Kai Hauke A1 - Stroncik, Nicole A. A1 - Trauth, Martin H. T1 - Towards an understanding of climate proxy formation in the Chew Bahir basin, southern Ethiopian Rift JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Deciphering paleoclimate from lake sediments is a challenge due to the complex relationship between climate parameters and sediment composition. Here we show the links between potassium (K) concentrations in the sediments of the Chew Bahir basin in the Southern Ethiopian Rift and fluctuations in the catchment precipitation/evaporation balance. Our micro-X-ray fluorescence and X-ray diffraction results suggest that the most likely process linking climate with potassium concentrations is the authigenic illitization of smectites during episodes of higher alkalinity and salinity in the closed -basin lake, due to a drier climate. Whole-rock and clay size fraction analyses suggest that illitization of the Chew Bahir clay minerals with increasing evaporation is enhanced by octahedral Al-to-Mg substitution in the clay minerals, with the resulting layer charge increase facilitating potassium-fixation. Linking mineralogy with geochemistry shows the links between hydroclimatic control, process and formation of the Chew Bahir K patterns, in the context of well-known and widely documented eastern African climate fluctuations over the last 45,000 years. These results indicate characteristic mineral alteration patterns associated with orbitally controlled wet-dry cycles such as the African Humid Period (similar to 15-5 ka) or high-latitude controlled climate events such as the Younger Dryas (similar to 12.8-11.6 ka) chronozone. Determining the impact of authigenic mineral alteration on the Chew Bahir records enables the interpretation of the previously established pXRF-derived aridity proxy K and provides a better paleohydrological understanding of complex climate proxy formation. KW - Paleoclimatology KW - Authigenic mineral transformation KW - Potassium KW - Illitization KW - Zeolites Y1 - 2018 U6 - https://doi.org/10.1016/j.palaeo.2018.04.009 SN - 0031-0182 SN - 1872-616X VL - 501 SP - 111 EP - 123 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Trauth, Martin H. A1 - Bergner, Andreas G. N. A1 - Foerster, Verena A1 - Junginger, Annett A1 - Maslin, Mark A. A1 - Schäbitz, Frank T1 - Episodes of environmental stability versus instability in Late Cenozoic lake records of Eastern Africa JF - Journal of human evolution N2 - Episodes of environmental stability and instability may be equally important for African hominin speciation, dispersal, and cultural innovation. Three examples of a change from stable to unstable environmental conditions are presented on three different time scales: (1) the Mid Holocene (MH) wet dry transition in the Chew Bahir basin (Southern Ethiopian Rift; between 11 ka and 4 ka), (2) the MIS 5-4 transition in the Naivasha basin (Central Kenya Rift; between 160 ka and 50 ka), and (3) the Early Mid Pleistocene Transition (EMPT) in the Olorgesailie basin (Southern Kenya Rift; between 1.25 Ma and 0.4 Ma). A probabilistic age modeling technique is used to determine the timing of these transitions, taking into account possible abrupt changes in the sedimentation rate including episodes of no deposition (hiatuses). Interestingly, the stable-unstable conditions identified in the three records are always associated with an orbitally-induced decrease of insolation: the descending portion of the 800 kyr cycle during the EMPT, declining eccentricity after the 115 ka maximum at the MIS 5-4 transition, and after similar to 10 ka. This observation contributes to an evidence-based discussion of the possible mechanisms causing the switching between environmental stability and instability in Eastern Africa at three different orbital time scales (10,000 to 1,000,000 years) during the Cenozoic. This in turn may lead to great insights into the environmental changes occurring at the same time as hominin speciation, brain expansion, dispersal out of Africa, and cultural innovations and may provide key evidence to build new hypotheses regarding the causes of early human evolution. (C) 2015 Elsevier Ltd. All rights reserved. KW - Paleoclimate KW - East Africa KW - Human evolution KW - Lakes KW - Sediments Y1 - 2015 U6 - https://doi.org/10.1016/j.jhevol.2015.03.011 SN - 0047-2484 VL - 87 SP - 21 EP - 31 PB - Elsevier CY - London ER -