TY - JOUR A1 - Hofman, Maarten P. G. A1 - Hayward, M. W. A1 - Heim, M. A1 - Marchand, P. A1 - Rolandsen, C. M. A1 - Mattisson, Jenny A1 - Urbano, F. A1 - Heurich, M. A1 - Mysterud, A. A1 - Melzheimer, J. A1 - Morellet, N. A1 - Voigt, Ulrich A1 - Allen, B. L. A1 - Gehr, Benedikt A1 - Rouco Zufiaurre, Carlos A1 - Ullmann, Wiebke A1 - Holand, O. A1 - Jorgensen, n H. A1 - Steinheim, G. A1 - Cagnacci, F. A1 - Kroeschel, M. A1 - Kaczensky, P. A1 - Buuveibaatar, B. A1 - Payne, J. C. A1 - Palmegiani, I A1 - Jerina, K. A1 - Kjellander, P. A1 - Johansson, O. A1 - LaPoint, S. A1 - Bayrakcismith, R. A1 - Linnell, J. D. C. A1 - Zaccaroni, M. A1 - Jorge, M. L. S. A1 - Oshima, J. E. F. A1 - Songhurst, A. A1 - Fischer, C. A1 - Mc Bride, R. T. A1 - Thompson, J. J. A1 - Streif, S. A1 - Sandfort, R. A1 - Bonenfant, Christophe A1 - Drouilly, M. A1 - Klapproth, M. A1 - Zinner, Dietmar A1 - Yarnell, Richard A1 - Stronza, A. A1 - Wilmott, L. A1 - Meisingset, E. A1 - Thaker, Maria A1 - Vanak, A. T. A1 - Nicoloso, S. A1 - Graeber, R. A1 - Said, S. A1 - Boudreau, M. R. A1 - Devlin, A. A1 - Hoogesteijn, R. A1 - May-Junior, J. A. A1 - Nifong, J. C. A1 - Odden, J. A1 - Quigley, H. B. A1 - Tortato, F. A1 - Parker, D. M. A1 - Caso, A. A1 - Perrine, J. A1 - Tellaeche, C. A1 - Zieba, F. A1 - Zwijacz-Kozica, T. A1 - Appel, C. L. A1 - Axsom, I A1 - Bean, W. T. A1 - Cristescu, B. A1 - Periquet, S. A1 - Teichman, K. J. A1 - Karpanty, S. A1 - Licoppe, A. A1 - Menges, V A1 - Black, K. A1 - Scheppers, Thomas L. A1 - Schai-Braun, S. C. A1 - Azevedo, F. C. A1 - Lemos, F. G. A1 - Payne, A. A1 - Swanepoel, L. H. A1 - Weckworth, B. A1 - Berger, A. A1 - Bertassoni, Alessandra A1 - McCulloch, G. A1 - Sustr, P. A1 - Athreya, V A1 - Bockmuhl, D. A1 - Casaer, J. A1 - Ekori, A. A1 - Melovski, D. A1 - Richard-Hansen, C. A1 - van de Vyver, D. A1 - Reyna-Hurtado, R. A1 - Robardet, E. A1 - Selva, N. A1 - Sergiel, A. A1 - Farhadinia, M. S. A1 - Sunde, P. A1 - Portas, R. A1 - Ambarli, Hüseyin A1 - Berzins, R. A1 - Kappeler, P. M. A1 - Mann, G. K. A1 - Pyritz, L. A1 - Bissett, C. A1 - Grant, T. A1 - Steinmetz, R. A1 - Swedell, Larissa A1 - Welch, R. J. A1 - Armenteras, D. A1 - Bidder, O. R. A1 - Gonzalez, T. M. A1 - Rosenblatt, A. A1 - Kachel, S. A1 - Balkenhol, N. T1 - Right on track? BT - Performance of satellite telemetry in terrestrial wildlife research JF - PLoS one N2 - Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0216223 SN - 1932-6203 VL - 14 IS - 5 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Treat, Claire C. A1 - Kleinen, Thomas A1 - Broothaerts, Nils A1 - Dalton, April S. A1 - Dommain, Rene A1 - Douglas, Thomas A. A1 - Drexler, Judith Z. A1 - Finkelstein, Sarah A. A1 - Grosse, Guido A1 - Hope, Geoffrey A1 - Hutchings, Jack A1 - Jones, Miriam C. A1 - Kuhry, Peter A1 - Lacourse, Terri A1 - Lahteenoja, Outi A1 - Loisel, Julie A1 - Notebaert, Bastiaan A1 - Payne, Richard J. A1 - Peteet, Dorothy M. A1 - Sannel, A. Britta K. A1 - Stelling, Jonathan M. A1 - Strauss, Jens A1 - Swindles, Graeme T. A1 - Talbot, Julie A1 - Tarnocai, Charles A1 - Verstraeten, Gert A1 - Williams, Christopher J. A1 - Xia, Zhengyu A1 - Yu, Zicheng A1 - Valiranta, Minna A1 - Hattestrand, Martina A1 - Alexanderson, Helena A1 - Brovkin, Victor T1 - Widespread global peatland establishment and persistence over the last 130,000 y JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Glacial-interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (> 40 degrees N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene. KW - peatlands KW - carbon KW - methane KW - carbon burial KW - Quaternary Y1 - 2019 U6 - https://doi.org/10.1073/pnas.1813305116 SN - 0027-8424 VL - 116 IS - 11 SP - 4822 EP - 4827 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Levermann, Anders A1 - Winkelmann, Ricarda A1 - Nowicki, S. A1 - Fastook, J. L. A1 - Frieler, Katja A1 - Greve, R. A1 - Hellmer, H. H. A1 - Martin, M. A. A1 - Meinshausen, Malte A1 - Mengel, Matthias A1 - Payne, A. J. A1 - Pollard, D. A1 - Sato, T. A1 - Timmermann, R. A1 - Wang, Wei Li A1 - Bindschadler, Robert A. T1 - Projecting antarctic ice discharge using response functions from SeaRISE ice-sheet models JF - Earth system dynamics N2 - The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02-0.14 m; 90% range: 0.0-0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04-0.21 m; 90% range: 0.01-0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04-0.17 m; 90% range: 0.02-0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07-0.28 m; 90% range: 0.04-0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets. Y1 - 2014 U6 - https://doi.org/10.5194/esd-5-271-2014 SN - 2190-4979 SN - 2190-4987 VL - 5 IS - 2 SP - 271 EP - 293 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Pattyn, Frank A1 - Perichon, Laura A1 - Durand, Gael A1 - Favier, Lionel A1 - Gagliardini, Olivier A1 - Hindmarsh, Richard C. A. A1 - Zwinger, Thomas A1 - Albrecht, Torsten A1 - Cornford, Stephen A1 - Docquier, David A1 - Furst, Johannes J. A1 - Goldberg, Daniel A1 - Gudmundsson, Gudmundur Hilmar A1 - Humbert, Angelika A1 - Huetten, Moritz A1 - Huybrechts, Philippe A1 - Jouvet, Guillaume A1 - Kleiner, Thomas A1 - Larour, Eric A1 - Martin, Daniel A1 - Morlighem, Mathieu A1 - Payne, Anthony J. A1 - Pollard, David A1 - Rueckamp, Martin A1 - Rybak, Oleg A1 - Seroussi, Helene A1 - Thoma, Malte A1 - Wilkens, Nina T1 - Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison JF - Journal of glaciology N2 - Predictions of marine ice-sheet behaviour require models able to simulate grounding-line migration. We present results of an intercomparison experiment for plan-view marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no buttressing effects from lateral drag). Perturbation experiments specifying spatial variation in basal sliding parameters permitted the evolution of curved grounding lines, generating buttressing effects. The experiments showed regions of compression and extensional flow across the grounding line, thereby invalidating the boundary layer theory. Steady-state grounding-line positions were found to be dependent on the level of physical model approximation. Resolving grounding lines requires inclusion of membrane stresses, a sufficiently small grid size (<500 m), or subgrid interpolation of the grounding line. The latter still requires nominal grid sizes of <5 km. For larger grid spacings, appropriate parameterizations for ice flux may be imposed at the grounding line, but the short-time transient behaviour is then incorrect and different from models that do not incorporate grounding-line parameterizations. The numerical error associated with predicting grounding-line motion can be reduced significantly below the errors associated with parameter ignorance and uncertainties in future scenarios. Y1 - 2013 U6 - https://doi.org/10.3189/2013JoG12J129 SN - 0022-1430 VL - 59 IS - 215 SP - 410 EP - 422 PB - International Glaciological Society CY - Cambridge ER -