TY - JOUR A1 - Grossart, Hans-Peter A1 - Van den Wyngaert, Silke A1 - Kagami, Maiko A1 - Wurzbacher, Christian A1 - Cunliffe, Michael A1 - Rojas-Jimenz, Keilor T1 - Fungi in aquatic ecosystems JF - Nature reviews. Microbiology N2 - Fungi are phylogenetically and functionally diverse ubiquitous components of almost all ecosystems on Earth, including aquatic environments stretching from high montane lakes down to the deep ocean. Aquatic ecosystems, however, remain frequently overlooked as fungal habitats, although fungi potentially hold important roles for organic matter cycling and food web dynamics. Recent methodological improvements have facilitated a greater appreciation of the importance of fungi in many aquatic systems, yet a conceptual framework is still missing. In this Review, we conceptualize the spatiotemporal dimensions, diversity, functions and organismic interactions of fungi in structuring aquatic food webs. We focus on currently unexplored fungal diversity, highlighting poorly understood ecosystems, including emerging artificial aquatic habitats. Y1 - 2019 U6 - https://doi.org/10.1038/s41579-019-0175-8 SN - 1740-1526 SN - 1740-1534 VL - 17 IS - 6 SP - 339 EP - 354 PB - Nature Publ. Group CY - Basingstoke ER - TY - JOUR A1 - Wurzbacher, Christian A1 - Fuchs, Andrea A1 - Attermeyer, Katrin A1 - Frindte, Katharina A1 - Grossart, Hans-Peter A1 - Hupfer, Michael A1 - Casper, Peter A1 - Monaghan, Michael T. T1 - Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment JF - Microbiome N2 - Background: Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. Methods: We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to Cs-137 dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Results: Community beta-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. Conclusions: By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea. KW - Archaea KW - Eukaryota KW - Bacteria KW - Community KW - Freshwater KW - Lake KW - DNA metabarcoding KW - Beta-diversity KW - Sediment KW - Turnover Y1 - 2017 U6 - https://doi.org/10.1186/s40168-017-0255-9 SN - 2049-2618 VL - 5 PB - BioMed Central CY - London ER - TY - JOUR A1 - Van den Wyngaert, Silke A1 - Ganzert, Lars A1 - Seto, Kensuke A1 - Rojas-Jimenez, Keilor A1 - Agha, Ramsy A1 - Berger, Stella A. A1 - Woodhouse, Jason A1 - Padisak, Judit A1 - Wurzbacher, Christian A1 - Kagami, Maiko A1 - Grossart, Hans-Peter T1 - Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits JF - ISME journal N2 - Zoosporic fungi of the phylum Chytridiomycota (chytrids) regularly dominate pelagic fungal communities in freshwater and marine environments. Their lifestyles range from obligate parasites to saprophytes. Yet, linking the scarce available sequence data to specific ecological traits or their host ranges constitutes currently a major challenge. We combined 28 S rRNA gene amplicon sequencing with targeted isolation and sequencing approaches, along with cross-infection assays and analysis of chytrid infection prevalence to obtain new insights into chytrid diversity, ecology, and seasonal dynamics in a temperate lake. Parasitic phytoplankton-chytrid and saprotrophic pollen-chytrid interactions made up the majority of zoosporic fungal reads. We explicitly demonstrate the recurrent dominance of parasitic chytrids during frequent diatom blooms and saprotrophic chytrids during pollen rains. Distinct temporal dynamics of diatom-specific parasitic clades suggest mechanisms of coexistence based on niche differentiation and competitive strategies. The molecular and ecological information on chytrids generated in this study will aid further exploration of their spatial and temporal distribution patterns worldwide. To fully exploit the power of environmental sequencing for studies on chytrid ecology and evolution, we emphasize the need to intensify current isolation efforts of chytrids and integrate taxonomic and autecological data into long-term studies and experiments. Y1 - 2022 U6 - https://doi.org/10.1038/s41396-022-01267-y SN - 1751-7362 SN - 1751-7370 VL - 16 IS - 9 SP - 2242 EP - 2254 PB - Springer Nature CY - London ER -