TY - JOUR A1 - Brechun, Katherine Emily A1 - Arndt, Katja Maren A1 - Woolley, G. Andrew T1 - Selection of protein-protein interactions of desired affinities with a bandpass circuit JF - Journal of molecular biology : JMB N2 - We have developed a genetic circuit in Escherichia coli that can be used to select for protein-protein interactions of different strengths by changing antibiotic concentrations in the media. The genetic circuit links protein-protein interaction strength to beta-lactamase activity while simultaneously imposing tuneable positive and negative selection pressure for beta-lactamase activity. Cells only survive if they express interacting proteins with affinities that fall within set high- and low-pass thresholds; i.e. the circuit therefore acts as a bandpass filter for protein-protein interactions. We show that the circuit can be used to recover protein-protein interactions of desired affinity from a mixed population with a range of affinities. The circuit can also be used to select for inhibitors of protein-protein interactions of defined strength. (C) 2018 Elsevier Ltd. All rights reserved. KW - synthetic biology KW - genetic circuit KW - biological engineering KW - protein-protein interactions KW - twin-arginine translocation KW - selection system Y1 - 2018 U6 - https://doi.org/10.1016/j.jmb.2018.11.011 SN - 0022-2836 SN - 1089-8638 VL - 431 IS - 2 SP - 391 EP - 400 PB - Elsevier CY - London ER - TY - JOUR A1 - Brechun, Katherine E. A1 - Arndt, Katja Maren A1 - Woolley, G. Andrew T1 - Strategies for the photo-control of endogenous protein activity JF - Current opinion in structural biology : review of all advances ; evaluation of key references ; comprehensive listing of papers Y1 - 2017 U6 - https://doi.org/10.1016/j.sbi.2016.11.014 SN - 0959-440X SN - 1879-033X VL - 45 SP - 53 EP - 58 PB - Elsevier CY - London ER - TY - JOUR A1 - Zhang, Fuzhong Z. A1 - Timm, Katharina A. A1 - Arndt, Katja Maren A1 - Woolley, G. Andrew T1 - Photocontrol of Coiled-Coil Proteins in Living Cells N2 - Light switching of the activity of a coiled-coil protein, the AP-1 transcription factor, in living cells was made possible by the introduction of a designed azobenzene-cross-linked dominant negative peptide, XAFosW (red and yellow in the picture). In the dark, XAFosW showed decreased helical content and decreased affinity for target Jun proteins (green); irradiation at 365 nm enhanced helicity and target affinity. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/26737/ U6 - https://doi.org/10.1002/anie.201000909 SN - 1433-7851 ER - TY - JOUR A1 - Mazumder, Mostafizur A1 - Brechun, Katherine E. A1 - Kim, Yongjoo B. A1 - Hoffmann, Stefan A. A1 - Chen, Yih Yang A1 - Keiski, Carrie-Lynn A1 - Arndt, Katja Maren A1 - McMillen, David R. A1 - Woolley, G. Andrew T1 - An Escherichia coli system for evolving improved light-controlled DNA-binding proteins JF - Protein engineering design & selection N2 - Light-switchable proteins offer numerous opportunities as tools for manipulating biological systems with exceptional degrees of spatiotemporal control. Most designed light-switchable proteins currently in use have not been optimised using the randomisation and selection/screening approaches that are widely used in other areas of protein engineering. Here we report an approach for screening light-switchable DNA-binding proteins that relies on light-dependent repression of the transcription of a fluorescent reporter. We demonstrate that the method can be used to recover a known light-switchable DNA-binding protein from a random library. KW - directed evolution KW - fluorescent reporter KW - optogenetics Y1 - 2015 U6 - https://doi.org/10.1093/protein/gzv033 SN - 1741-0126 SN - 1741-0134 VL - 28 IS - 9 SP - 293 EP - 302 PB - Oxford Univ. Press CY - Oxford ER -