TY - JOUR A1 - Scheller, Frieder W. A1 - Bauer, Christian G. A1 - Makower, Alexander A1 - Wollenberger, Ursula A1 - Warsinke, Axel A1 - Bier, Frank Fabian T1 - Immunoassays using enzymatic amplification electrodes Y1 - 2002 SN - 0-7484-0791-X ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Bauer, Christian G. A1 - Markower, Alexander A1 - Wollenberger, Ursula A1 - Warsinke, Axel A1 - Bier, Frank Fabian T1 - Coupling of immunoassays with enzymatic recycling electrodes Y1 - 2001 ER - TY - BOOK A1 - Wollenberger, Ursula A1 - Renneberg, Reinhard A1 - Bier, Frank Fabian A1 - Scheller, Frieder W. T1 - Analytische Biochemie : eine praktische Einführung in das Messen mit Biomolekülen Y1 - 2003 SN - 3-527-30166-6 PB - John Wiley & Sons CY - Hoboken ER - TY - JOUR A1 - Jin, Wen A1 - Wollenberger, Ursula A1 - Bier, Frank Fabian A1 - Makower, Alexander A1 - Schiller, Frieder W. T1 - Electron transfer between cytochrome c and copper enzymes Y1 - 1996 ER - TY - JOUR A1 - Bier, Frank Fabian A1 - Ehrentreich-Förster, Eva A1 - Scheller, Frieder W. A1 - Makower, Alexander A1 - Eremenko, A. V. A1 - Wollenberger, Ursula A1 - Bauer, Christian G. A1 - Pfeiffer, Dorothea A1 - Micheel, Burkhard T1 - Ultrasensitive biosensors Y1 - 1996 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Makower, Alexander A1 - Bier, Frank Fabian A1 - Wollenberger, Ursula A1 - Ghindilis, A. L. A1 - Eremenko, A. V. A1 - Pfeiffer, Dorothea T1 - Enzymsensoren zur Bestimmung subnanomolarer Konzentrationen Y1 - 1995 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Makower, Alexander A1 - Ghindilis, A. L. A1 - Bier, Frank Fabian A1 - Ehrentreich-Förster, Eva A1 - Wollenberger, Ursula A1 - Bauer, Christian G. A1 - Micheel, Burkhard A1 - Pfeiffer, Dorothea A1 - Szeponik, Jan A1 - Michael, N. A1 - Kaden, H. T1 - Enzyme sensors for subnanomolar concentrations Y1 - 1995 ER - TY - JOUR A1 - Jin, Wen A1 - Wollenberger, Ursula A1 - Bier, Frank Fabian A1 - Scheller, Frieder W. T1 - Construction and characterization of multi-layer-enzyme electrode : covalent binding of quinoprotein glucose dehydrogenase onto gold electrodes Y1 - 1995 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Yarman, Aysu A1 - Bachmann, Till A1 - Hirsch, Thomas A1 - Kubick, Stefan A1 - Renneberg, Reinhard A1 - Schumacher, Soeren A1 - Wollenberger, Ursula A1 - Teller, Carsten A1 - Bier, Frank Fabian ED - Gu, MB ED - Kim, HS T1 - Future of biosensors: a personal view JF - Advances in biochemical engineering, biotechnology JF - Advances in Biochemical Engineering-Biotechnology N2 - Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar' personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables' such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous' biosensors will emerge. KW - Biosensors KW - Molecularly imprinted polymers KW - Personalized medicine Y1 - 2014 SN - 978-3-642-54143-8; 978-3-642-54142-1 U6 - https://doi.org/10.1007/10_2013_251 SN - 0724-6145 VL - 140 SP - 1 EP - 28 PB - Springer CY - Berlin ER - TY - JOUR A1 - Tanne, Johannes A1 - Jeoung, Jae-Hun A1 - Peng, Lei A1 - Yarman, Aysu A1 - Dietzel, Birgit A1 - Schulz, Burkhard A1 - Schad, Daniel A1 - Dobbek, Holger A1 - Wollenberger, Ursula A1 - Bier, Frank Fabian A1 - Scheller, Frieder W. T1 - Direct Electron Transfer and Bioelectrocatalysis by a Hexameric, Heme Protein at Nanostructured Electrodes JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - A nanohybrid consisting of poly(3-aminobenzenesulfonic acid-co-aniline) and multiwalled carbon nanotubes [MWCNT-P(ABS-A)]) on a gold electrode was used to immobilize the hexameric tyrosine-coordinated heme protein (HTHP). The enzyme showed direct electron transfer between the heme group of the protein and the nanostructured surface. Desorption of the noncovalently bound heme from the protein could be excluded by control measurements with adsorbed hemin on aminohexanthiol-modified electrodes. The nanostructuring and the optimised charge characteristics resulted in a higher protein coverage as compared with MUA/MU modified electrodes. The adsorbed enzyme shows catalytic activity for the cathodic H2O2 reduction and oxidation of NADH. KW - HTHP KW - Nanohybrid KW - Poylaniline KW - Multiwalled carbon nanotube Y1 - 2015 U6 - https://doi.org/10.1002/elan.201500231 SN - 1040-0397 SN - 1521-4109 VL - 27 IS - 10 SP - 2262 EP - 2267 PB - Wiley-VCH CY - Weinheim ER -