TY - JOUR A1 - Markovic, Danijela A1 - Carrizo, Savrina F. A1 - Kaercher, Oskar A1 - Walz, Ariane A1 - David, Jonathan N. W. T1 - Vulnerability of European freshwater catchments to climate change JF - Global change biology N2 - Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies. KW - catchment connectivity KW - climate change KW - exposure KW - freshwater biodiversity KW - gap analysis KW - resilience KW - sensitivity KW - vulnerability Y1 - 2017 U6 - https://doi.org/10.1111/gcb.13657 SN - 1354-1013 SN - 1365-2486 VL - 23 SP - 3567 EP - 3580 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schmidt, Katja A1 - Walz, Ariane A1 - Martin-Lopez, Berta A1 - Sachse, Rene T1 - Testing socio-cultural valuation methods of ecosystem services to explain land use preferences JF - Ecosystem Services : Science, Policy and Practice N2 - Socio-cultural valuation still emerges as a methodological field in ecosystem service (ES) research and until now lacks consistent formalisation and balanced application in ES assessments. In this study, we examine the explanatory value of ES values for land use preferences. We use 563 responses to a survey about the Pentland Hills regional park in Scotland. Specifically, we aim to (1) identify clusters of land use preferences by using a novel visualisation tool, (2) test if socio-cultural values of ESs or (3) user characteristics are linked with land use preferences, and (4) determine whether both socio-cultural values of ESs and user characteristics can predict land use preferences. Our results suggest that there are five groups of people with different land use preferences, ranging from forest and nature enthusiasts to traditionalists, multi-functionalists and recreation seekers. Rating and weighting of ESs and user characteristics were associated with different clusters. Neither socio-cultural values nor user characteristics were suitable predictors for land use preferences. While several studies have explored land use preferences by identifying socio-cultural values in the past, our findings imply that in this case study ES values inform about general perceptions but do not replace the assessment of land use preferences. (C) 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. KW - Non-monetary valuation KW - Values KW - Visitors KW - Landscape visualisation KW - Visualisation tool Y1 - 2017 U6 - https://doi.org/10.1016/j.ecoser.2017.07.001 SN - 2212-0416 VL - 26 SP - 270 EP - 288 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Patenaude, Genevieve A1 - Lautenbach, Sven A1 - Paterson, James S. A1 - Locatelli, Tommaso A1 - Dormann, Carsten F. A1 - Metzger, Marc J. A1 - Walz, Ariane T1 - Breaking the ecosystem services glass ceiling: realising impact JF - Regional environmental change N2 - Through changes in policy and practice, the inherent intent of the ecosystem services (ES) concept is to safeguard ecosystems for human wellbeing. While impact is intrinsic to the concept, little is known about how and whether ES science leads to impact. Evidence of impact is needed. Given the lack of consensus on what constitutes impact, we differentiate between attributional impacts (transitional impacts on policy, practice, awareness or other drivers) and consequential impacts (real, on-the-ground impacts on biodiversity, ES, ecosystem functions and human wellbeing) impacts. We conduct rigorous statistical analyses on three extensive databases for evidence of attributional impact (the form most prevalently reported): the IPBES catalogue (n = 102), the Lautenbach systematic review (n = 504) and a 5-year in-depth survey of the OPERAs Exemplars (n = 13). To understand the drivers of impacts, we statistically analyse associations between study characteristics and impacts. Our findings show that there exists much confusion with regard to defining ES science impacts, and that evidence of attributional impact is scarce: only 25% of the IPBES assessments self-reported impact (7% with evidence); in our meta-analysis of Lautenbach’s systematic review, 33% of studies provided recommendations indicating intent of impacts. Systematic impact reporting was imposed by design on the OPERAs Exemplars: 100% reported impacts, suggesting the importance of formal impact reporting. The generalised linear models and correlations between study characteristics and attributional impact dimensions highlight four characteristics as minimum baseline for impact: study robustness, integration of policy instruments into study design, stakeholder involvement and type of stakeholders involved. Further in depth examination of the OPERAs Exemplars showed that study characteristics associated with impact on awareness and practice differ from those associated with impact on policy: to achieve impact along specific dimensions, bespoke study designs are recommended. These results inform targeted recommendations for ES science to break its impact glass ceiling. KW - Ecosystem services KW - Impact KW - Awareness KW - Policy KW - Practice Y1 - 2019 U6 - https://doi.org/10.1007/s10113-018-1434-3 SN - 1436-3798 SN - 1436-378X VL - 19 IS - 8 SP - 2261 EP - 2274 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Dobkowitz, Sophia A1 - Walz, Ariane A1 - Baroni, Gabriele A1 - Pérez-Marin, Aldrin M. T1 - Cross-Scale Vulnerability Assessment for Smallholder Farming BT - A Case Study from the Northeast of Brazil T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Climate change heavily impacts smallholder farming worldwide. Cross-scale vulnerability assessment has a high potential to identify nested measures for reducing vulnerability of smallholder farmers. Despite their high practical value, there are currently only limited examples of cross-scale assessments. The presented study aims at assessing the vulnerability of smallholder farmers in the Northeast of Brazil across three scales: regional, farm and field scale. In doing so, it builds on existing vulnerability indices and compares results between indices at the same scale and across scales. In total, six independent indices are tested, two at each scale. The calculated indices include social, economic and ecological indicators, based on municipal statistics, meteorological data, farm interviews and soil analyses. Subsequently, indices and overlapping indicators are normalized for intra- and cross-scale comparison. The results show considerable differences between indices across and within scales. They indicate different activities to reduce vulnerability of smallholder farmers. Major shortcomings arise from the conceptual differences between the indices. We therefore recommend the development of hierarchical indices, which are adapted to local conditions and contain more overlapping indicators for a better understanding of the nested vulnerabilities of smallholder farmers. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 978 KW - family farming KW - nested vulnerabilities KW - vulnerability indices KW - semi-arid regions KW - Paraíba Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474703 SN - 1866-8372 IS - 978 ER - TY - GEN A1 - Reinhardt, Julia A1 - Liersch, Stefan A1 - Abdeladhim, Mohamed Arbi A1 - Diallo, Mori A1 - Dickens, Chris A1 - Fournet, Samuel A1 - Hattermann, Fred Fokko A1 - Kabaseke, Clovis A1 - Muhumuza, Moses A1 - Mul, Marloes L. A1 - Pilz, Tobias A1 - Otto, Ilona M. A1 - Walz, Ariane T1 - Systematic evaluation of scenario assessments supporting sustainable integrated natural resources management BT - evidence from four case studies in Africa T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Scenarios have become a key tool for supporting sustainability research on regional and global change. In this study we evaluate four regional scenario assessments: first, to explore a number of research challenges related to sustainability science and, second, to contribute to sustainability research in the specific case studies. The four case studies used commonly applied scenario approaches that are (i) a story and simulation approach with stakeholder participation in the Oum Zessar watershed, Tunisia, (ii) a participatory scenario exploration in the Rwenzori region, Uganda, (iii) a model-based prepolicy study in the Inner Niger Delta, Mali, and (iv) a model coupling-based scenario analysis in upper Thukela basin, South Africa. The scenario assessments are evaluated against a set of known challenges in sustainability science, with each challenge represented by two indicators, complemented by a survey carried out on the perception of the scenario assessments within the case study regions. The results show that all types of scenario assessments address many sustainability challenges, but that the more complex ones based on story and simulation and model coupling are the most comprehensive. The study highlights the need to investigate abrupt system changes as well as governmental and political factors as important sources of uncertainty. For an in-depth analysis of these issues, the use of qualitative approaches and an active engagement of local stakeholders are suggested. Studying ecological thresholds for the regional scale is recommended to support research on regional sustainability. The evaluation of the scenario processes and outcomes by local researchers indicates the most transparent scenario assessments as the most useful. Focused, straightforward, yet iterative scenario assessments can be very relevant by contributing information to selected sustainability problems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 930 KW - Africa KW - global and regional change KW - integrated assessments KW - participatory research KW - sustainability science Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445784 SN - 1866-8372 IS - 930 ER - TY - GEN A1 - Schmidt, Katja A1 - Sachse, René A1 - Walz, Ariane T1 - Current role of social benefits in ecosystem service assessments T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Ecosystem services have a significant impact on human wellbeing. While ecosystem services are frequently represented by monetary values, social values and underlying social benefits remain under explored. The purpose of this study is to assess whether and how social benefits have been explicitly addressed within socio-economic and socio-cultural ecosystem services research, ultimately allowing a better understanding between ecosystem services and human well-being. In this paper, we reviewed 115 international primary valuation studies and tested four hypotheses associated to the identification of social benefits of ecosystem services using logistic regressions. Tested hypotheses were that (1) social benefits are mostly derived in studies that assess cultural ecosystem services as opposed to other ecosystem service types, (2) there is a pattern of social benefits and certain cultural ecosystem services assessed simultaneously, (3) monetary valuation techniques go beyond expressing monetary values and convey social benefits, and (4) directly addressing stakeholder's views the consideration of social benefits in ecosystem service assessments. Our analysis revealed that (1) a variety of social benefits are valued in studies that assess either of the four ecosystem service types, (2) certain social benefits are likely to co-occur in combination with certain cultural ecosystem services, (3) of the studies that employed monetary valuation techniques, simulated market approaches overlapped most frequently with the assessment of social benefits and (4) studies that directly incorporate stakeholder's views were more likely to also assess social benefits. (C) 2016 Elsevier B.V. All rights reserved. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 915 KW - literature review KW - non-monetary valuation KW - monetary valuation KW - social valuation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442024 SN - 1866-8372 IS - 915 SP - 49 EP - 64 ER - TY - GEN A1 - Schmidt, Katja A1 - Walz, Ariane A1 - Jones, Isobel A1 - Metzger, Marc J. T1 - The sociocultural value of upland regions in the vicinity of cities in comparison with urban green spaces T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Mountain and upland regions provide a wide range of ecosystem services to residents and visitors. While ecosystem research in mountain regions is on the rise, the linkages between sociocultural benefits and ecological systems remain little explored. Mountainous regions close to urban areas provide numerous benefits to a large number of individuals, suggesting a high social value, particularly for cultural ecosystem services. We explored and compared visitors' valuation of ecosystem services in the Pentland Hills, an upland range close to the city of Edinburgh, Scotland, and urban green spaces within Edinburgh. Based on 715 responses to user surveys in both study areas, we identified intense use and high social value for both areas. Several ecosystem services were perceived as equally important in both areas, including many cultural ecosystem services. Significant differences were revealed in the value of physically using nature, which Pentland Hills users rated more highly than those in the urban green spaces, and of mitigation of pollutants and carbon sequestration, for which the urban green spaces were valued more highly. Major differences were further identified for preferences in future land management, with nature-oriented management preferred by about 57% of the interviewees in the Pentland Hills, compared to 31% in the urban parks. The study highlights the substantial value of upland areas in close vicinity to a city for physically using and experiencing nature, with a strong acceptance of nature conservation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 920 KW - ecosystem services KW - mountains near cities KW - urban green spaces KW - social valuation KW - perception KW - preferences in land management KW - Scotland Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442010 SN - 1866-8372 IS - 920 SP - 465 EP - 474 ER - TY - GEN A1 - Walz, Ariane A1 - Grêt-Regamey, Adrienne A1 - Lavorel, Sandra T1 - Social valuation of ecosystem services in mountain regions T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 917 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442031 SN - 1866-8372 IS - 917 SP - 1985 EP - 1987 ER - TY - JOUR A1 - Walz, Ariane A1 - Schmidt, Katja A1 - Ruiz-Frau, Ana A1 - Nicholas, Kimberly A. A1 - Bierry, Adeline A1 - Lentsch, Aster de Vries A1 - Dyankov, Apostol A1 - Joyce, Deirdre A1 - Liski, Anja H. A1 - Marba, Nuria A1 - Rosario, Ines T. A1 - Scholte, Samantha S. K. T1 - Sociocultural valuation of ecosystem services for operational ecosystem management: mapping applications by decision contexts in Europe JF - Regional environmental change N2 - Sociocultural valuation (SCV) of ecosystem services (ES) discloses the principles, importance or preferences expressed by people towards nature. Although ES research has increasingly addressed sociocultural values in past years, little effort has been made to systematically review the components of sociocultural valuation applications for different decision contexts (i.e. awareness raising, accounting, priority setting, litigation and instrument design). In this analysis, we investigate the characteristics of 48 different sociocultural valuation applications—characterised by unique combinations of decision context, methods, data collection formats and participants—across ten European case studies. Our findings show that raising awareness for the sociocultural value of ES by capturing people’s perspective and establishing the status quo, was found the most frequent decision context in case studies, followed by priority setting and instrument development. Accounting and litigation issues were not addressed in any of the applications. We reveal that applications for particular decision contexts are methodologically similar, and that decision contexts determine the choice of methods, data collection formats and participants involved. Therefore, we conclude that understanding the decision context is a critical first step to designing and carrying out fit-for-purpose sociocultural valuation of ES in operational ecosystem management. KW - Sociocultural valuation KW - Ecosystem services KW - Local-to-regional scale KW - Operational use Y1 - 2019 U6 - https://doi.org/10.1007/s10113-019-01506-7 SN - 1436-3798 SN - 1436-378X VL - 19 IS - 8 SP - 2245 EP - 2259 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Markovic, Danijela A1 - Walz, Ariane A1 - Kärcher, Oskar T1 - Scale effects on the performance of niche-based models of freshwater fish distributions: Local vs. upstream area influences JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Niche-based species distribution models (SDMs) play a central role in studying species response to environmental change. Effective management and conservation plans for freshwater ecosystems require SDMs that accommodate hierarchical catchment ordering and provide clarity on the performance of such models across multiple scales. The scale-dependence components considered here are: (a) environment spatial structure, represented by hierarchical catchment ordering following the Strahler system; (b) analysis grain, that included 1st to 5th order catchments; and (c) response grain, the grain at which species respond most, represented by local and upstream catchment area effects. We used fish occurrence data from the Danube River Basin and various factors representing climate, land cover and anthropogenic pressures. Our results indicate that the choice of response grain local vs. upstream area effects and the choice of analysis grain, only marginally influence the performance of SDMs. Upstream effects tend to better predict fish distributions than corresponding local effects for anthropogenic and land cover factors, in particular for species sensitive to pollution. Key predictors and their relative importance are scale and species dependent. Consequently, choosing proper species dependent spatial scales and factors is imperative for effective river rehabilitation measures. KW - Catchment order KW - Conservation planning KW - Danube KW - Freshwater fish KW - Species distribution modelling KW - Upstream area Y1 - 2019 U6 - https://doi.org/10.1016/j.ecolmodel.2019.108818 SN - 0304-3800 SN - 1872-7026 VL - 411 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kärcher, Oskar A1 - Frank, Karin A1 - Walz, Ariane A1 - Markovic, Danijela T1 - Scale effects on the performance of niche-based models of freshwater fish distributions JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Niche-based species distribution models (SDMs) have become an essential tool in conservation and restoration planning. Given the current threats to freshwater biodiversity, it is of fundamental importance to address scale effects on the performance of niche-based SDMs of freshwater species’ distributions. The scale effects are addressed here in the context of hierarchical catchment ordering, considered as counterpart to coarsening grain-size by increasing grid-cell size. We combine fish occurrence data from the Danube River Basin, the hierarchical catchment ordering and multiple environmental factors representing topographic, climatic and anthropogenic effects to model fish occurrence probability across multiple scales. We focus on 1st to 5th order catchments. The spatial scale (hierarchical catchment order) only marginally influences the mean performance of SDMs, however the uncertainty of the estimates increases with scale. Key predictors and their relative importance are scale and species dependent. Our findings have useful implications for choosing proper species dependent spatial scales for river rehabilitation measures, and for conservation planning in areas where fine grain species data are unavailable. KW - Catchment order KW - Conservation planning KW - Danube KW - Generalized additive models KW - Species distribution modelling Y1 - 2019 U6 - https://doi.org/10.1016/j.ecolmodel.2019.05.006 SN - 0304-3800 SN - 1872-7026 VL - 405 SP - 33 EP - 42 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Martin-Lopez, Berta A1 - Leister, Ines A1 - Cruz, Pedro Lorenzo A1 - Palomo, Ignacio A1 - Gret-Regamey, Adrienne A1 - Harrison, Paula A. A1 - Lavorel, Sandra A1 - Locatelli, Bruno A1 - Luque, Sandra A1 - Walz, Ariane T1 - Nature’s contributions to people in mountains BT - a review JF - PLoS one N2 - Mountains play a key role in the provision of nature’s contributions to people (NCP) worldwide that support societies’ quality of life. Simultaneously, mountains are threatened by multiple drivers of change. Due to the complex interlinkages between biodiversity, quality of life and drivers of change, research on NCP in mountains requires interdisciplinary approaches. In this study, we used the conceptual framework of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) and the notion of NCP to determine to what extent previous research on ecosystem services in mountains has explored the different components of the IPBES conceptual framework. We conducted a systematic review of articles on ecosystem services in mountains published up to 2016 using the Web of Science and Scopus databases. Descriptive statistical and network analyses were conducted to explore the level of research on the components of the IPBES framework and their interactions. Our results show that research has gradually become more interdisciplinary by studying higher number of NCP, dimensions of quality of life, and indirect drivers of change. Yet, research focusing on biodiversity, regulating NCP and direct drivers has decreased over time. Furthermore, despite the fact that research on NCP in mountains becoming more policy-oriented over time, mainly in relation to payments for ecosystem services, institutional responses remained underexplored in the reviewed studies. Finally, we discuss the relevant knowledge gaps that should be addressed in future research in order to contribute to IPBES. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0217847 SN - 1932-6203 VL - 14 IS - 6 PB - PLoS CY - San Fransisco ER - TY - GEN A1 - Rounsevell, Mark D. A. A1 - Metzger, Marc J. A1 - Walz, Ariane T1 - Operationalising ecosystem services in Europe T2 - Regional environmental change Y1 - 2019 U6 - https://doi.org/10.1007/s10113-019-01560-1 SN - 1436-3798 SN - 1436-378X VL - 19 IS - 8 SP - 2143 EP - 2149 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Reinhardt, Julia A1 - Liersch, Stefan A1 - Abdeladhim, Mohamed Arbi A1 - Diallo, Mori A1 - Dickens, Chris A1 - Fournet, Samuel A1 - Hattermann, Fred Fokko A1 - Kabaseke, Clovis A1 - Muhumuza, Moses A1 - Mul, Marloes L. A1 - Pilz, Tobias A1 - Otto, Ilona M. A1 - Walz, Ariane T1 - Systematic evaluation of scenario assessments supporting sustainable integrated natural resources management BT - evidence from four case studies in Africa JF - Ecology and society : a journal of integrative science for resilience and sustainability N2 - Scenarios have become a key tool for supporting sustainability research on regional and global change. In this study we evaluate four regional scenario assessments: first, to explore a number of research challenges related to sustainability science and, second, to contribute to sustainability research in the specific case studies. The four case studies used commonly applied scenario approaches that are (i) a story and simulation approach with stakeholder participation in the Oum Zessar watershed, Tunisia, (ii) a participatory scenario exploration in the Rwenzori region, Uganda, (iii) a model-based prepolicy study in the Inner Niger Delta, Mali, and (iv) a model coupling-based scenario analysis in upper Thukela basin, South Africa. The scenario assessments are evaluated against a set of known challenges in sustainability science, with each challenge represented by two indicators, complemented by a survey carried out on the perception of the scenario assessments within the case study regions. The results show that all types of scenario assessments address many sustainability challenges, but that the more complex ones based on story and simulation and model coupling are the most comprehensive. The study highlights the need to investigate abrupt system changes as well as governmental and political factors as important sources of uncertainty. For an in-depth analysis of these issues, the use of qualitative approaches and an active engagement of local stakeholders are suggested. Studying ecological thresholds for the regional scale is recommended to support research on regional sustainability. The evaluation of the scenario processes and outcomes by local researchers indicates the most transparent scenario assessments as the most useful. Focused, straightforward, yet iterative scenario assessments can be very relevant by contributing information to selected sustainability problems. KW - Africa KW - global and regional change KW - integrated assessments KW - participatory research KW - sustainability science Y1 - 2018 U6 - https://doi.org/10.5751/ES-09728-230105 SN - 1708-3087 VL - 23 IS - 1 PB - Resilience Alliance CY - Wolfville ER - TY - JOUR A1 - Schoonover, Heather A. A1 - Gret-Regamey, Adrienne A1 - Metzger, Marc J. A1 - Ruiz-Frau, Ana A1 - Santos-Reis, Margarida A1 - Scholte, Samantha S. K. A1 - Walz, Ariane A1 - Nicholas, Kimberly A. T1 - Creating space, aligning motivations, and building trust BT - a practical framework for stakeholder engagement based on experience in 12 ecosystem services case studies JF - Ecology and society : a journal of integrative science for resilience and sustainability N2 - Ecosystem services inherently involve people, whose values help define the benefits of nature's services. It is thus important for researchers to involve stakeholders in ecosystem services research. However, a simple and practicable framework to guide such engagement, and in particular to help researchers anticipate and consider key issues and challenges, has not been well explored. Here, we use experience from the 12 case studies in the European Operational Potential of Ecosystem Research Applications (OPERAs) project to propose a stakeholder engagement framework comprising three key elements: creating space, aligning motivations, and building trust. We argue that involving stakeholders in research demands thoughtful reflection from the researchers about what kind of space they want to create, including if and how they want to bring different interests together, how much space they want to allow for critical discussion, and whether there is a role for particular stakeholders to serve as conduits between others. In addition, understanding their own motivations—including values, knowledge, goals, and desired benefits—will help researchers decide when and how to involve stakeholders, identify areas of common ground and potential disagreement, frame the project appropriately, set expectations, and ensure each party is able to see benefits of engaging with each other. Finally, building relationships with stakeholders can be difficult but considering the roles of existing relationships, time, approach, reputation, and belonging can help build mutual trust. Although the three key elements and the paths between them can play out differently depending on the particular research project, we suggest that a research design that considers how to create the space in which researchers and stakeholders will meet, align motivations between researchers and stakeholders, and build mutual trust will help foster productive researcher–stakeholder relationships. KW - cocreated knowledge KW - ecosystem services KW - participatory research KW - research design KW - stakeholder engagement KW - transdisciplinary research Y1 - 2019 U6 - https://doi.org/10.5751/ES-10061-240111 SN - 1708-3087 VL - 24 IS - 1 PB - Resilience Alliance CY - Wolfville ER - TY - JOUR A1 - Schmidt, Katja A1 - Martin-Lopez, Berta A1 - Phillips, Peter M. A1 - Julius, Eike A1 - Makan, Neville A1 - Walz, Ariane T1 - Key landscape features in the provision of ecosystem services BT - Insights for management JF - Land use policy N2 - Whereas ecosystem service research is increasingly being promoted in science and policy, the utilisation of ecosystem services knowledge remains largely underexplored for regional ecosystem management. To overcome the mere generation of knowledge and contribute to decision-making, scientists are facing the challenge of articulating specific implications of the ecosystem service approach for practical land use management. In this contribution, we compare the results of participatory mapping of ecosystem services with the existing management plan for the Pentland Hills Regional Park (Scotland, UK) to inform its future management plan. By conducting participatory mapping in a workshop with key stakeholders (n = 20), we identify hotspots of ecosystem services and the landscape features underpinning such hotspots. We then analyse to what extent these landscape features are the focus of the current management plan. We found a clear mismatch between the key landscape features underpinning the provision of ecosystem services and the management strategy suggested. Our findings allow for a better understanding of the required focus of future land use management to account for ecosystem services. KW - Participatory mapping KW - PPGIS KW - Landscape features KW - Content analysis KW - Land use management KW - Operationalisation Y1 - 2018 U6 - https://doi.org/10.1016/j.landusepol.2018.12.022 SN - 0264-8377 SN - 1873-5754 VL - 82 SP - 353 EP - 366 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Hellwig, Niels A1 - Walz, Ariane A1 - Markovic, Danijela T1 - Climatic and socioeconomic effects on land cover changes across Europe BT - Does protected area designation matter? T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Land cover change is a dynamic phenomenon driven by synergetic biophysical and socioeconomic effects. It involves massive transitions from natural to less natural habitats and thereby threatens ecosystems and the services they provide. To retain intact ecosystems and reduce land cover change to a minimum of natural transition processes, a dense network of protected areas has been established across Europe. However, even protected areas and in particular the zones around protected areas have been shown to undergo land cover changes. The aim of our study was to compare land cover changes in protected areas, non-protected areas, and 1 km buffer zones around protected areas and analyse their relationship to climatic and socioeconomic factors across Europe between 2000 and 2012 based on earth observation data. We investigated land cover flows describing major change processes: urbanisation, afforestation, deforestation, intensification of agriculture, extensification of agriculture, and formation of water bodies. Based on boosted regression trees, we modelled correlations between land cover flows and climatic and socioeconomic factors. The results show that land cover changes were most frequent in 1 km buffer zones around protected areas (3.0% of all buffer areas affected). Overall, land cover changes within protected areas were less frequent than outside, although they still amounted to 18,800 km2 (1.5% of all protected areas) from 2000 to 2012. In some parts of Europe, urbanisation and intensification of agriculture still accounted for up to 25% of land cover changes within protected areas. Modelling revealed meaningful relationships between land cover changes and a combination of influencing factors. Demographic factors (accessibility to cities and population density) were most important for coarse-scale patterns of land cover changes, whereas fine-scale patterns were most related to longitude (representing the general east/west economic gradient) and latitude (representing the north/south climatic gradient). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 764 KW - Species-Diversity KW - Determinants KW - Intensity KW - Patterns KW - Transformation KW - Tree KW - National-Parks KW - Biodiversity KW - Drivers KW - Abandonment Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437885 IS - 764 ER - TY - JOUR A1 - Huber, Robert A1 - Rigling, Andreas A1 - Bebi, Peter A1 - Brand, Fridolin Simon A1 - Briner, Simon A1 - Buttler, Alexandre A1 - Elkin, Che A1 - Gillet, Francois A1 - Gret-Regamey, Adrienne A1 - Hirschi, Christian A1 - Lischke, Heike A1 - Scholz, Roland Werner A1 - Seidl, Roman A1 - Spiegelberger, Thomas A1 - Walz, Ariane A1 - Zimmermann, Willi A1 - Bugmann, Harald T1 - Sustainable land use in Mountain Regions under global change synthesis across scales and disciplines JF - Ecology and society : a journal of integrative science for resilience and sustainability N2 - Mountain regions provide essential ecosystem goods and services (EGS) for both mountain dwellers and people living outside these areas. Global change endangers the capacity of mountain ecosystems to provide key services. The Mountland project focused on three case study regions in the Swiss Alps and aimed to propose land-use practices and alternative policy solutions to ensure the provision of key EGS under climate and land-use changes. We summarized and synthesized the results of the project and provide insights into the ecological, socioeconomic, and political processes relevant for analyzing global change impacts on a European mountain region. In Mountland, an integrative approach was applied, combining methods from economics and the political and natural sciences to analyze ecosystem functioning from a holistic human-environment system perspective. In general, surveys, experiments, and model results revealed that climate and socioeconomic changes are likely to increase the vulnerability of the EGS analyzed. We regard the following key characteristics of coupled human-environment systems as central to our case study areas in mountain regions: thresholds, heterogeneity, trade-offs, and feedback. Our results suggest that the institutional framework should be strengthened in a way that better addresses these characteristics, allowing for (1) more integrative approaches, (2) a more network-oriented management and steering of political processes that integrate local stakeholders, and (3) enhanced capacity building to decrease the identified vulnerability as central elements in the policy process. Further, to maintain and support the future provision of EGS in mountain regions, policy making should also focus on project-oriented, cross-sectoral policies and spatial planning as a coordination instrument for land use in general. KW - adaptive management KW - climate change KW - ecosystem services KW - experiments KW - interdisciplinary research KW - land-use change KW - modeling KW - transdisciplinary research Y1 - 2013 U6 - https://doi.org/10.5751/ES-05499-180336 SN - 1708-3087 VL - 18 IS - 3 PB - Resilience Alliance CY - Wolfville ER - TY - JOUR A1 - Reichstein, Markus A1 - Bahn, Michael A1 - Ciais, Philippe A1 - Frank, Dorothea A1 - Mahecha, Miguel D. A1 - Seneviratne, Sonia I. A1 - Zscheischler, Jakob A1 - Beer, Christian A1 - Buchmann, Nina A1 - Frank, David C. A1 - Papale, Dario A1 - Rammig, Anja A1 - Smith, Pete A1 - Thonicke, Kirsten A1 - van der Velde, Marijn A1 - Vicca, Sara A1 - Walz, Ariane A1 - Wattenbach, Martin T1 - Climate extremes and the carbon cycle JF - Nature : the international weekly journal of science N2 - The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget. Y1 - 2013 U6 - https://doi.org/10.1038/nature12350 SN - 0028-0836 VL - 500 IS - 7462 SP - 287 EP - 295 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Nussbaumer, S. A1 - Schaub, Y. A1 - Huggel, C. A1 - Walz, Ariane T1 - Risk estimation for future glacier lake outburst floods based on local land-use changes JF - Natural hazards and earth system sciences N2 - Effects of climate change are particularly strong in high-mountain regions. Most visibly, glaciers are shrinking at a rapid pace, and as a consequence, glacier lakes are forming or growing. At the same time the stability of mountain slopes is reduced by glacier retreat, permafrost thaw and other factors, resulting in an increasing landslide hazard which can potentially impact lakes and therewith trigger far-reaching and devastating outburst floods. To manage risks from existing or future lakes, strategies need to be developed to plan in time for adequate risk reduction measures at a local level. However, methods to assess risks from future lake outbursts are not available and need to be developed to evaluate both future hazard and future damage potential. Here a method is presented to estimate future risks related to glacier lake outbursts for a local site in southern Switzerland (Naters, Valais). To generate two hazard scenarios, glacier shrinkage and lake formation modelling was applied, combined with simple flood modelling and field work. Furthermore, a land-use model was developed to quantify and allocate land-use changes based on local-to-regional storylines and three scenarios of land-use driving forces. Results are conceptualized in a matrix of three land-use and two hazard scenarios for the year 2045, and show the distribution of risk in the community of Naters, including high and very high risk areas. The study underlines the importance of combined risk management strategies focusing on land-use planning, on vulnerability reduction, as well as on structural measures (where necessary) to effectively reduce future risks related to lake outburst floods. Y1 - 2014 U6 - https://doi.org/10.5194/nhess-14-1611-2014 SN - 1561-8633 VL - 14 IS - 6 SP - 1611 EP - 1624 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Walz, Ariane A1 - Braendle, J. M. A1 - Lang, D. J. A1 - Brand, Fridolin Simon A1 - Briner, Simon A1 - Elkin, C. A1 - Hirschi, C. A1 - Huber, R. A1 - Lischke, H. A1 - Schmatz, D. R. T1 - Experience from downscaling IPCC-SRES scenarios to specific national-level focus scenarios for ecosystem service management JF - Technological forecasting & social change N2 - Scenario analysis is a widely used approach to incorporate uncertainties in global change research. In the context of regional ecosystem service and landscape management where global IPCC climate simulations and their downscaled derivates are applied, it can be useful to work with regional sodo-economic scenarios that are coherent with the global IPCC scenarios. The consistency with the original source scenarios, transparency and reproducibility of the methods used as well as the internal consistency of the derived scenarios are important methodological prerequisites for coherently downscaling pre-existing source scenarios. In contrast to well-established systematic-qualitative scenario techniques, we employ here a formal technique of scenario construction which combines expert judgement with a quantitative, indicator-based selection algorithm in order to deduce a formally consistent set of focus scenario. In our case study, these focus scenarios reflect the potential development pathways of major national-level drivers for ecosystem service management in Swiss mountain regions. The integration of an extra impact factor ("Global Trends") directly referring to the four principle SRES scenario families, helped us to formally internalise base assumptions of IPCC SRES scenarios to regional scenarios that address a different thematic focus (ecosystem service management), spatial level (national) and time horizon (2050). Compared to the well-established systematic-qualitative approach, we find strong similarities between the two methods, including the susceptibility to personal judgement which is only partly reduced by the formal method. However, the formalised scenario approach conveys four clear advantages, (1) the better documentation of the process, (2) its reproducibility, (3) the openness in terms of the number and directions of the finally selected set of scenarios, and (4) its analytical power. (C) 2013 Elsevier Inc. All rights reserved. KW - Nested scenarios KW - Formalised scenario analysis KW - Regional ecosystem service management KW - Downscaling socio-economic scenarios KW - IPCC Y1 - 2014 U6 - https://doi.org/10.1016/j.techfore.2013.08.014 SN - 0040-1625 SN - 1873-5509 VL - 86 SP - 21 EP - 32 PB - Elsevier CY - New York ER - TY - JOUR A1 - Frank, Dorothe A. A1 - Reichstein, Markus A1 - Bahn, Michael A1 - Thonicke, Kirsten A1 - Frank, David A1 - Mahecha, Miguel D. A1 - Smith, Pete A1 - Van der Velde, Marijn A1 - Vicca, Sara A1 - Babst, Flurin A1 - Beer, Christian A1 - Buchmann, Nina A1 - Canadell, Josep G. A1 - Ciais, Philippe A1 - Cramer, Wolfgang A1 - Ibrom, Andreas A1 - Miglietta, Franco A1 - Poulter, Ben A1 - Rammig, Anja A1 - Seneviratne, Sonia I. A1 - Walz, Ariane A1 - Wattenbach, Martin A1 - Zavala, Miguel A. A1 - Zscheischler, Jakob T1 - Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts JF - Global change biology N2 - Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks. KW - carbon cycle KW - climate change KW - climate extremes KW - climate variability KW - disturbance KW - terrestrial ecosystems Y1 - 2015 U6 - https://doi.org/10.1111/gcb.12916 SN - 1354-1013 SN - 1365-2486 VL - 21 IS - 8 SP - 2861 EP - 2880 PB - Wiley-Blackwell CY - Hoboken ER - TY - GEN A1 - Comber, Alexis A1 - Mooney, Peter A1 - Purves, Ross S. A1 - Rocchini, Duccio A1 - Walz, Ariane T1 - Crowdsourcing: it matters who the crowd are BT - the impacts of between group variations in recording land cover T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Volunteered geographical information (VGI) and citizen science have become important sources data for much scientific research. In the domain of land cover, crowdsourcing can provide a high temporal resolution data to support different analyses of landscape processes. However, the scientists may have little control over what gets recorded by the crowd, providing a potential source of error and uncertainty. This study compared analyses of crowdsourced land cover data that were contributed by different groups, based on nationality (labelled Gondor and Non-Gondor) and on domain experience (labelled Expert and Non-Expert). The analyses used a geographically weighted model to generate maps of land cover and compared the maps generated by the different groups. The results highlight the differences between the maps how specific land cover classes were under-and over-estimated. As crowdsourced data and citizen science are increasingly used to replace data collected under the designed experiment, this paper highlights the importance of considering between group variations and their impacts on the results of analyses. Critically, differences in the way that landscape features are conceptualised by different groups of contributors need to be considered when using crowdsourced data in formal scientific analyses. The discussion considers the potential for variation in crowdsourced data, the relativist nature of land cover and suggests a number of areas for future research. The key finding is that the veracity of citizen science data is not the critical issue per se. Rather, it is important to consider the impacts of differences in the semantics, affordances and functions associated with landscape features held by different groups of crowdsourced data contributors. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 539 KW - volunteered geographic information KW - citizen science KW - categories KW - landscape KW - accuracy KW - ontology KW - internet Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410894 SN - 1866-8372 IS - 539 ER - TY - GEN A1 - Langerwisch, F. A1 - Walz, Ariane A1 - Rammig, A. A1 - Tietjen, B. A1 - Thonicke, Kirsten A1 - Cramer, Wolfgang T1 - Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Any regular interaction of land and river during flooding affects carbon pools within the terrestrial system, riverine carbon and carbon exported from the system. In the Amazon basin carbon fluxes are considerably influenced by annual flooding, during which terrigenous organic material is imported to the river. The Amazon basin therefore represents an excellent example of a tightly coupled terrestrial-riverine system. The processes of generation, conversion and transport of organic carbon in such a coupled terrigenous-riverine system strongly interact and are climate-sensitive, yet their functioning is rarely considered in Earth system models and their response to climate change is still largely unknown. To quantify regional and global carbon budgets and climate change effects on carbon pools and carbon fluxes, it is important to account for the coupling between the land, the river, the ocean and the atmosphere. We developed the RIVerine Carbon Model (RivCM), which is directly coupled to the well-established dynamic vegetation and hydrology model LPJmL, in order to account for this large-scale coupling. We evaluate RivCM with observational data and show that some of the values are reproduced quite well by the model, while we see large deviations for other variables. This is mainly caused by some simplifications we assumed. Our evaluation shows that it is possible to reproduce large-scale carbon transport across a river system but that this involves large uncertainties. Acknowledging these uncertainties, we estimate the potential changes in riverine carbon by applying RivCM for climate forcing from five climate models and three CO2 emission scenarios (Special Report on Emissions Scenarios, SRES). We find that climate change causes a doubling of riverine organic carbon in the southern and western basin while reducing it by 20% in the eastern and northern parts. In contrast, the amount of riverine inorganic carbon shows a 2- to 3-fold increase in the entire basin, independent of the SRES scenario. The export of carbon to the atmosphere increases as well, with an average of about 30 %. In contrast, changes in future export of organic carbon to the Atlantic Ocean depend on the SRES scenario and are projected to either decrease by about 8.9% (SRES A1B) or increase by about 9.1% (SRES A2). Such changes in the terrigenous-riverine system could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean. Changes in riverine carbon could lead to a shift in the riverine nutrient supply and pH, while changes in the exported carbon to the ocean lead to changes in the supply of organic material that acts as a food source in the Atlantic. On larger scales the increased outgassing of CO2 could turn the Amazon basin from a sink of carbon to a considerable source. Therefore, we propose that the coupling of terrestrial and riverine carbon budgets should be included in subsequent analysis of the future regional carbon budget. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 526 KW - global vegetation model KW - Amazon-River KW - organic-matter KW - seed dispersal KW - Atlantic-Ocean KW - water-balance KW - forest KW - CO2 KW - wetlands KW - system Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410177 SN - 1866-8372 IS - 526 ER - TY - GEN A1 - Langerwisch, Fanny A1 - Walz, Ariane A1 - Rammig, Anja A1 - Tietjen, Britta A1 - Thonicke, Kirsten A1 - Cramer, Wolfgang T1 - Deforestation in Amazonia impacts riverine carbon dynamics T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 %) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20% (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60% due to deforestation. The discharge of organic carbon to the ocean will be reduced by about 40% under the most severe deforestation and climate change scenario. These changes would have local and regional consequences on the carbon balance and habitat characteristics in the Amazon basin itself as well as in the adjacent Atlantic Ocean. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 535 KW - Global vegetation model KW - Climate-Change KW - Brazilian Amazon KW - organic-matter KW - land-use KW - secondary forests KW - seed dispersal KW - Atlantic-Ocean KW - basin KW - CO2 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410225 SN - 1866-8372 IS - 535 ER - TY - GEN A1 - Rolinski, Susanne A1 - Rammig, Anja A1 - Walz, Ariane A1 - von Bloh, Werner A1 - van Oijen, M. A1 - Thonicke, Kirsten T1 - A probabilistic risk assessment for the vulnerability of the European carbon cycle to weather extremes BT - The ecosystem perspective T2 - Postprints der Universität Potsdam : Mathematisch naturwissenschaftliche Reihe (487) N2 - Extreme weather events are likely to occur more often under climate change and the resulting effects on ecosystems could lead to a further acceleration of climate change. But not all extreme weather events lead to extreme ecosystem response. Here, we focus on hazardous ecosystem behaviour and identify coinciding weather conditions. We use a simple probabilistic risk assessment based on time series of ecosystem behaviour and climate conditions. Given the risk assessment terminology, vulnerability and risk for the previously defined hazard are estimated on the basis of observed hazardous ecosystem behaviour. We apply this approach to extreme responses of terrestrial ecosystems to drought, defining the hazard as a negative net biome productivity over a 12-month period. We show an application for two selected sites using data for 1981-2010 and then apply the method to the pan-European scale for the same period, based on numerical modelling results (LPJmL for ecosystem behaviour; ERA-Interim data for climate). Our site-specific results demonstrate the applicability of the proposed method, using the SPEI to describe the climate condition. The site in Spain provides an example of vulnerability to drought because the expected value of the SPEI is 0.4 lower for hazardous than for non-hazardous ecosystem behaviour. In northern Germany, on the contrary, the site is not vulnerable to drought because the SPEI expectation values imply wetter conditions in the hazard case than in the non-hazard case. At the pan-European scale, ecosystem vulnerability to drought is calculated in the Mediterranean and temperate region, whereas Scandinavian ecosystems are vulnerable under conditions without water shortages. These first model- based applications indicate the conceptual advantages of the proposed method by focusing on the identification of critical weather conditions for which we observe hazardous ecosystem behaviour in the analysed data set. Application of the method to empirical time series and to future climate would be important next steps to test the approach. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 487 KW - global vegetation model KW - climate extremes KW - fire emissions KW - drought KW - forest KW - productivity KW - reduction KW - events KW - assimilation KW - uncertainty Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407999 SN - 1866-8372 IS - 487 SP - 1813 EP - 1831 ER - TY - JOUR A1 - Schmidt, Katja A1 - Sachse, Rene A1 - Walz, Ariane T1 - Current role of social benefits in ecosystem service assessments JF - Landscape and urban planning : an international journal of landscape ecology, planning and design N2 - Ecosystem services have a significant impact on human wellbeing. While ecosystem services are frequently represented by monetary values, social values and underlying social benefits remain underexplored. The purpose of this study is to assess whether and how social benefits have been explicitly addressed within socio-economic and socio-cultural ecosystem services research, ultimately allowing a better understanding between ecosystem services and human well-being. In this paper, we reviewed 115 international primary valuation studies and tested four hypotheses associated to the identification of social benefits of ecosystem services using logistic regressions. Tested hypotheses were that (1) social benefits are mostly derived in studies that assess cultural ecosystem services as opposed to other ecosystem service types, (2) there is a pattern of social benefits and certain cultural ecosystem services assessed simultaneously, (3) monetary valuation techniques go beyond expressing monetary values and convey social benefits, and (4) directly addressing stakeholdeŕs views the consideration of social benefits in ecosystem service assessments. Our analysis revealed that (1) a variety of social benefits are valued in studies that assess either of the four ecosystem service types, (2) certain social benefits are likely to co-occur in combination with certain cultural ecosystem services, (3) of the studies that employed monetary valuation techniques, simulated market approaches overlapped most frequently with the assessment of social benefits and (4) studies that directly incorporate stakeholder's views were more likely to also assess social benefits. KW - Literature review KW - Non-monetary valuation KW - Monetary valuation KW - Social valuation Y1 - 2016 U6 - https://doi.org/10.1016/j.landurbplan.2016.01.005 SN - 0169-2046 SN - 1872-6062 VL - 149 SP - 49 EP - 64 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schulz, Katharina A1 - Voigt, Karsten A1 - Beusch, Christine A1 - Almeida-Cortez, Jarcilene S. A1 - Kowarik, Ingo A1 - Walz, Ariane A1 - Cierjacks, Arne T1 - Grazing deteriorates the soil carbon stocks of Caatinga forest ecosystems in Brazil JF - Forest ecology and management N2 - Grazing by domestic ungulates can have substantial impacts on forests in arid and semi-arid regions, possibly including severe loss of carbon from the soil. Predicting net livestock impacts on soil organic carbon stocks remains challenging, however, due to the dependence on animal loads and on soil and environmental parameters. The objective of this study was to better understand grazing effects on soil organic carbon in seasonal tropical dry forests of north-eastern Brazil (Caatinga) by quantifying carbon stocks of the upper soil profile (0–5 cm depth) and greater soil depths (>5 cm depth down to bedrock) along a gradient of grazing intensity while accounting for other influencing factors such as soil texture, vegetation, landscape topography, and water availability. We analysed soil organic carbon, soil clay content, altitude above sea level, soil depth to bedrock, distance to the nearest permanent water body, species diversity of perennial plants and aboveground biomass on 45 study plots located in the vicinity of the Itaparica Reservoir, Pernambuco, Brazil. Livestock (mainly goats and cattle) are unevenly distributed in the studied ecosystem, thus grazing intensity was accounted for based on the weight of livestock droppings per square metre and classified as no or light, intermediate, or heavy grazing. The mean soil organic carbon in the area was 16.86 ± 1.28 Mg ha−1 C with approximately one-quarter found in the upper 5 cm of the soil profile (4.14 ± 0.43 Mg ha−1 C) and the remainder (12.57 ± 0.97 Mg ha−1 C) in greater soil depths (>5 cm). Heavy grazing led to significantly lower soil organic carbon stocks in the upper 5 cm, whereas no effect on soil organic carbon of the soil overall or in greater soil depths was detectable. The soil’s clay content and the altitude proved to be the most relevant factors influencing overall soil organic carbon stocks and those in greater soil depths (>5 cm). Our findings suggest that grazing causes substantial release of carbon from Brazilian dry forest soils, which should be addressed through improved grazing management via a legally compulsory rotation system. This would ultimately contribute to the conservation of a unique forest system and associated ecosystem services. KW - Carbon cycle KW - Degradation KW - Desertification KW - Livestock KW - Semi-arid KW - Soil Y1 - 2016 U6 - https://doi.org/10.1016/j.foreco.2016.02.011 SN - 0378-1127 SN - 1872-7042 VL - 367 SP - 62 EP - 70 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Langerwisch, F. A1 - Walz, Ariane A1 - Rammig, A. A1 - Tietjen, B. A1 - Thonicke, K. A1 - Cramer, W. T1 - Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain JF - Earth system dynamics N2 - Any regular interaction of land and river during flooding affects carbon pools within the terrestrial system, riverine carbon and carbon exported from the system. In the Amazon basin carbon fluxes are considerably influenced by annual flooding, during which terrigenous organic material is imported to the river. The Amazon basin therefore represents an excellent example of a tightly coupled terrestrial-riverine system. The processes of generation, conversion and transport of organic carbon in such a coupled terrigenous-riverine system strongly interact and are climate-sensitive, yet their functioning is rarely considered in Earth system models and their response to climate change is still largely unknown. To quantify regional and global carbon budgets and climate change effects on carbon pools and carbon fluxes, it is important to account for the coupling between the land, the river, the ocean and the atmosphere. We developed the RIVerine Carbon Model (RivCM), which is directly coupled to the well-established dynamic vegetation and hydrology model LPJmL, in order to account for this large-scale coupling. We evaluate RivCM with observational data and show that some of the values are reproduced quite well by the model, while we see large deviations for other variables. This is mainly caused by some simplifications we assumed. Our evaluation shows that it is possible to reproduce large-scale carbon transport across a river system but that this involves large uncertainties. Acknowledging these uncertainties, we estimate the potential changes in riverine carbon by applying RivCM for climate forcing from five climate models and three CO2 emission scenarios (Special Report on Emissions Scenarios, SRES). We find that climate change causes a doubling of riverine organic carbon in the southern and western basin while reducing it by 20% in the eastern and northern parts. In contrast, the amount of riverine inorganic carbon shows a 2- to 3-fold increase in the entire basin, independent of the SRES scenario. The export of carbon to the atmosphere increases as well, with an average of about 30 %. In contrast, changes in future export of organic carbon to the Atlantic Ocean depend on the SRES scenario and are projected to either decrease by about 8.9% (SRES A1B) or increase by about 9.1% (SRES A2). Such changes in the terrigenous-riverine system could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean. Changes in riverine carbon could lead to a shift in the riverine nutrient supply and pH, while changes in the exported carbon to the ocean lead to changes in the supply of organic material that acts as a food source in the Atlantic. On larger scales the increased outgassing of CO2 could turn the Amazon basin from a sink of carbon to a considerable source. Therefore, we propose that the coupling of terrestrial and riverine carbon budgets should be included in subsequent analysis of the future regional carbon budget. Y1 - 2016 U6 - https://doi.org/10.5194/esd-7-559-2016 SN - 2190-4979 SN - 2190-4987 VL - 7 SP - 559 EP - 582 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Langerwisch, Fanny A1 - Walz, Ariane A1 - Rammig, Anja A1 - Tietjen, Britta A1 - Thonicke, Kirsten A1 - Cramer, Wolfgang T1 - Deforestation in Amazonia impacts riverine carbon dynamics JF - Earth system dynamics N2 - Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 %) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20% (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60% due to deforestation. The discharge of organic carbon to the ocean will be reduced by about 40% under the most severe deforestation and climate change scenario. These changes would have local and regional consequences on the carbon balance and habitat characteristics in the Amazon basin itself as well as in the adjacent Atlantic Ocean. Y1 - 2016 U6 - https://doi.org/10.5194/esd-7-953-2016 SN - 2190-4979 SN - 2190-4987 VL - 7 SP - 953 EP - 968 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schmidt, Katja A1 - Walz, Ariane A1 - Jones, Isobel A1 - Metzger, Marc J. T1 - The Sociocultural Value of Upland Regions in the Vicinity of Cities in Comparison With Urban Green Spaces JF - Mountain research and development KW - Ecosystem services KW - mountains near cities KW - urban green spaces KW - social valuation KW - perception KW - preferences in land management KW - Scotland Y1 - 2016 U6 - https://doi.org/10.1659/MRD-JOURNAL-D-16-00044.1 SN - 0276-4741 SN - 1994-7151 VL - 36 SP - 465 EP - 474 PB - American Geophysical Union CY - Lawrence ER - TY - GEN A1 - Walz, Ariane A1 - Gret-Regamey, Adrienne A1 - Lavorel, Sandra T1 - Social valuation of ecosystem services in mountain regions T2 - Regional environmental change Y1 - 2016 U6 - https://doi.org/10.1007/s10113-016-1028-x SN - 1436-3798 SN - 1436-378X VL - 16 SP - 1985 EP - 1987 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Comber, Alexis A1 - Mooney, Peter A1 - Purves, Ross S. A1 - Rocchini, Duccio A1 - Walz, Ariane T1 - Crowdsourcing: It Matters Who the Crowd Are. The Impacts of between Group Variations in Recording Land Cover JF - PLoS one N2 - Volunteered geographical information (VGI) and citizen science have become important sources data for much scientific research. In the domain of land cover, crowdsourcing can provide a high temporal resolution data to support different analyses of landscape processes. However, the scientists may have little control over what gets recorded by the crowd, providing a potential source of error and uncertainty. This study compared analyses of crowdsourced land cover data that were contributed by different groups, based on nationality (labelled Gondor and Non-Gondor) and on domain experience (labelled Expert and Non-Expert). The analyses used a geographically weighted model to generate maps of land cover and compared the maps generated by the different groups. The results highlight the differences between the maps how specific land cover classes were under-and over-estimated. As crowdsourced data and citizen science are increasingly used to replace data collected under the designed experiment, this paper highlights the importance of considering between group variations and their impacts on the results of analyses. Critically, differences in the way that landscape features are conceptualised by different groups of contributors need to be considered when using crowdsourced data in formal scientific analyses. The discussion considers the potential for variation in crowdsourced data, the relativist nature of land cover and suggests a number of areas for future research. The key finding is that the veracity of citizen science data is not the critical issue per se. Rather, it is important to consider the impacts of differences in the semantics, affordances and functions associated with landscape features held by different groups of crowdsourced data contributors. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0158329 SN - 1932-6203 VL - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Rolinski, Susanne A1 - Rammig, A. A1 - Walz, Ariane A1 - von Bloh, Werner A1 - van Oijen, M. A1 - Thonicke, Kirsten T1 - A probabilistic risk assessment for the vulnerability of the European carbon cycle to weather extremes: the ecosystem perspective JF - Biogeosciences N2 - Extreme weather events are likely to occur more often under climate change and the resulting effects on ecosystems could lead to a further acceleration of climate change. But not all extreme weather events lead to extreme ecosystem response. Here, we focus on hazardous ecosystem behaviour and identify coinciding weather conditions. We use a simple probabilistic risk assessment based on time series of ecosystem behaviour and climate conditions. Given the risk assessment terminology, vulnerability and risk for the previously defined hazard are estimated on the basis of observed hazardous ecosystem behaviour. We apply this approach to extreme responses of terrestrial ecosystems to drought, defining the hazard as a negative net biome productivity over a 12-month period. We show an application for two selected sites using data for 1981-2010 and then apply the method to the pan-European scale for the same period, based on numerical modelling results (LPJmL for ecosystem behaviour; ERA-Interim data for climate). Our site-specific results demonstrate the applicability of the proposed method, using the SPEI to describe the climate condition. The site in Spain provides an example of vulnerability to drought because the expected value of the SPEI is 0.4 lower for hazardous than for non-hazardous ecosystem behaviour. In northern Germany, on the contrary, the site is not vulnerable to drought because the SPEI expectation values imply wetter conditions in the hazard case than in the non-hazard case. At the pan-European scale, ecosystem vulnerability to drought is calculated in the Mediterranean and temperate region, whereas Scandinavian ecosystems are vulnerable under conditions without water shortages. These first model- based applications indicate the conceptual advantages of the proposed method by focusing on the identification of critical weather conditions for which we observe hazardous ecosystem behaviour in the analysed data set. Application of the method to empirical time series and to future climate would be important next steps to test the approach. Y1 - 2015 U6 - https://doi.org/10.5194/bg-12-1813-2015 SN - 1726-4170 SN - 1726-4189 VL - 12 IS - 6 SP - 1813 EP - 1831 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Hellwig, Niels A1 - Walz, Ariane A1 - Markovic, Danijela T1 - Climatic and socioeconomic effects on land cover changes across Europe BT - Does protected area designation matter? JF - PloS One N2 - Land cover change is a dynamic phenomenon driven by synergetic biophysical and socioeconomic effects. It involves massive transitions from natural to less natural habitats and thereby threatens ecosystems and the services they provide. To retain intact ecosystems and reduce land cover change to a minimum of natural transition processes, a dense network of protected areas has been established across Europe. However, even protected areas and in particular the zones around protected areas have been shown to undergo land cover changes. The aim of our study was to compare land cover changes in protected areas, non-protected areas, and 1 km buffer zones around protected areas and analyse their relationship to climatic and socioeconomic factors across Europe between 2000 and 2012 based on earth observation data. We investigated land cover flows describing major change processes: urbanisation, afforestation, deforestation, intensification of agriculture, extensification of agriculture, and formation of water bodies. Based on boosted regression trees, we modelled correlations between land cover flows and climatic and socioeconomic factors. The results show that land cover changes were most frequent in 1 km buffer zones around protected areas (3.0% of all buffer areas affected). Overall, land cover changes within protected areas were less frequent than outside, although they still amounted to 18,800 km2 (1.5% of all protected areas) from 2000 to 2012. In some parts of Europe, urbanisation and intensification of agriculture still accounted for up to 25% of land cover changes within protected areas. Modelling revealed meaningful relationships between land cover changes and a combination of influencing factors. Demographic factors (accessibility to cities and population density) were most important for coarse-scale patterns of land cover changes, whereas fine-scale patterns were most related to longitude (representing the general east/west economic gradient) and latitude (representing the north/south climatic gradient). KW - Species-Diversity KW - Determinants KW - Intensity KW - Patterns KW - Transformation KW - Tree KW - National-Parks KW - Biodiversity KW - Drivers KW - Abandonment Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0219374 SN - 1932-6203 VL - 14 IS - 7 PB - PLOS 1 CY - San Francisco ER - TY - JOUR A1 - Dobkowitz, Sophia A1 - Walz, Ariane A1 - Baroni, Gabriele A1 - Pérez-Marin, Aldrin M. T1 - Cross-Scale Vulnerability Assessment for Smallholder Farming BT - A Case Study from the Northeast of Brazil JF - Sustainability N2 - Climate change heavily impacts smallholder farming worldwide. Cross-scale vulnerability assessment has a high potential to identify nested measures for reducing vulnerability of smallholder farmers. Despite their high practical value, there are currently only limited examples of cross-scale assessments. The presented study aims at assessing the vulnerability of smallholder farmers in the Northeast of Brazil across three scales: regional, farm and field scale. In doing so, it builds on existing vulnerability indices and compares results between indices at the same scale and across scales. In total, six independent indices are tested, two at each scale. The calculated indices include social, economic and ecological indicators, based on municipal statistics, meteorological data, farm interviews and soil analyses. Subsequently, indices and overlapping indicators are normalized for intra- and cross-scale comparison. The results show considerable differences between indices across and within scales. They indicate different activities to reduce vulnerability of smallholder farmers. Major shortcomings arise from the conceptual differences between the indices. We therefore recommend the development of hierarchical indices, which are adapted to local conditions and contain more overlapping indicators for a better understanding of the nested vulnerabilities of smallholder farmers. KW - family farming KW - nested vulnerabilities KW - vulnerability indices KW - semi-arid regions KW - Paraíba Y1 - 2020 U6 - https://doi.org/10.3390/su12093787 SN - 2071-1050 VL - 12 IS - 9 PB - MDPI CY - Basel ER - TY - GEN A1 - Fischer, Melanie A1 - Korup, Oliver A1 - Veh, Georg A1 - Walz, Ariane T1 - Controls of outbursts of moraine-dammed lakes in the greater Himalayan region T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Glacial lakes in the Hindu Kush–Karakoram–Himalayas–Nyainqentanglha (HKKHN) region have grown rapidly in number and area in past decades, and some dozens have drained in catastrophic glacial lake outburst floods (GLOFs). Estimating regional susceptibility of glacial lakes has largely relied on qualitative assessments by experts, thus motivating a more systematic and quantitative appraisal. Before the backdrop of current climate-change projections and the potential of elevation-dependent warming, an objective and regionally consistent assessment is urgently needed. We use an inventory of 3390 moraine-dammed lakes and their documented outburst history in the past four decades to test whether elevation, lake area and its rate of change, glacier-mass balance, and monsoonality are useful inputs to a probabilistic classification model. We implement these candidate predictors in four Bayesian multi-level logistic regression models to estimate the posterior susceptibility to GLOFs. We find that mostly larger lakes have been more prone to GLOFs in the past four decades regardless of the elevation band in which they occurred. We also find that including the regional average glacier-mass balance improves the model classification. In contrast, changes in lake area and monsoonality play ambiguous roles. Our study provides first quantitative evidence that GLOF susceptibility in the HKKHN scales with lake area, though less so with its dynamics. Our probabilistic prognoses offer improvement compared to a random classification based on average GLOF frequency. Yet they also reveal some major uncertainties that have remained largely unquantified previously and that challenge the applicability of single models. Ensembles of multiple models could be a viable alternative for more accurately classifying the susceptibility of moraine-dammed lakes to GLOFs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1160 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-522050 SN - 1866-8372 ER - TY - JOUR A1 - Fischer, Melanie A1 - Korup, Oliver A1 - Veh, Georg A1 - Walz, Ariane T1 - Controls of outbursts of moraine-dammed lakes in the greater Himalayan region JF - The Cryosphere N2 - Glacial lakes in the Hindu Kush–Karakoram–Himalayas–Nyainqentanglha (HKKHN) region have grown rapidly in number and area in past decades, and some dozens have drained in catastrophic glacial lake outburst floods (GLOFs). Estimating regional susceptibility of glacial lakes has largely relied on qualitative assessments by experts, thus motivating a more systematic and quantitative appraisal. Before the backdrop of current climate-change projections and the potential of elevation-dependent warming, an objective and regionally consistent assessment is urgently needed. We use an inventory of 3390 moraine-dammed lakes and their documented outburst history in the past four decades to test whether elevation, lake area and its rate of change, glacier-mass balance, and monsoonality are useful inputs to a probabilistic classification model. We implement these candidate predictors in four Bayesian multi-level logistic regression models to estimate the posterior susceptibility to GLOFs. We find that mostly larger lakes have been more prone to GLOFs in the past four decades regardless of the elevation band in which they occurred. We also find that including the regional average glacier-mass balance improves the model classification. In contrast, changes in lake area and monsoonality play ambiguous roles. Our study provides first quantitative evidence that GLOF susceptibility in the HKKHN scales with lake area, though less so with its dynamics. Our probabilistic prognoses offer improvement compared to a random classification based on average GLOF frequency. Yet they also reveal some major uncertainties that have remained largely unquantified previously and that challenge the applicability of single models. Ensembles of multiple models could be a viable alternative for more accurately classifying the susceptibility of moraine-dammed lakes to GLOFs. Y1 - 2020 U6 - https://doi.org/10.5194/tc-15-4145-2021 SN - 1994-0416 VL - 15 PB - Copernicus Publications CY - Göttingen ER - TY - JOUR A1 - Veh, Georg A1 - Korup, Oliver A1 - Roessner, Sigrid A1 - Walz, Ariane T1 - Detecting Himalayan glacial lake outburst floods from Landsat time series JF - Remote sensing of environment : an interdisciplinary journal N2 - Several thousands of moraine-dammed and supraglacial lakes spread over the Hindu Kush Himalayan (HKH) region, and some have grown rapidly in past decades due to glacier retreat. The sudden emptying of these lakes releases large volumes of water and sediment in destructive glacial lake outburst floods (GLOFs), one of the most publicised natural hazards to the rapidly growing Himalayan population. Despite the growing number and size of glacial lakes, the frequency of documented GLOFs is remarkably constant. We explore this possible reporting bias and offer a new processing chain for establishing a more complete Himalayan GLOF inventory. We make use of the full seasonal archive of Landsat images between 1988 and 2016, and track automatically where GLOFs left shrinking water bodies, and tails of sediment at high elevations. We trained a Random Forest classifier to generate fuzzy land cover maps for 2491 images, achieving overall accuracies of 91%. We developed a likelihood-based change point technique to estimate the timing of GLOFs at the pixel scale. Our method objectively detected ten out of eleven documented GLOFs, and another ten lakes that gave rise to previously unreported GLOFs. We thus nearly doubled the existing GLOF record for a study area covering similar to 10% of the HKH region. Remaining challenges for automatically detecting GLOFs include image insufficiently accurate co-registration, misclassifications in the land cover maps and image noise from clouds, shadows or ice. Yet our processing chain is robust and has the potential for being applied on the greater HKH and mountain ranges elsewhere, opening the door for objectively expanding the knowledge base on GLOF activity over the past three decades. KW - Random Forest KW - Fuzzy classification KW - Land cover maps KW - Change detection KW - Change points KW - Lakes KW - Sediment tails KW - Hindu Kush Himalayas (HKH) Y1 - 2018 U6 - https://doi.org/10.1016/j.rse.2017.12.025 SN - 0034-4257 SN - 1879-0704 VL - 207 SP - 84 EP - 97 PB - Elsevier CY - New York ER - TY - GEN A1 - Fischer, Melanie A1 - Brettin, Jana A1 - Roessner, Sigrid A1 - Walz, Ariane A1 - Fort, Monique A1 - Korup, Oliver T1 - Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Pokhara (ca. 850 m a.s.l.), Nepal's second-largest city, lies at the foot of the Higher Himalayas and has more than tripled its population in the past 3 decades. Construction materials are in high demand in rapidly expanding built-up areas, and several informal settlements cater to unregulated sand and gravel mining in the Pokhara Valley's main river, the Seti Khola. This river is fed by the Sabche glacier below Annapurna III (7555 m a.s.l.), some 35 km upstream of the city, and traverses one of the steepest topographic gradients in the Himalayas. In May 2012 a sudden flood caused >70 fatalities and intense damage along this river and rekindled concerns about flood risk management. We estimate the flow dynamics and inundation depths of flood scenarios using the hydrodynamic model HEC-RAS (Hydrologic Engineering Center’s River Analysis System). We simulate the potential impacts of peak discharges from 1000 to 10 000 m3 s−1 on land cover based on high-resolution Maxar satellite imagery and OpenStreetMap data (buildings and road network). We also trace the dynamics of two informal settlements near Kaseri and Yamdi with high potential flood impact from RapidEye, PlanetScope, and Google Earth imagery of the past 2 decades. Our hydrodynamic simulations highlight several sites of potential hydraulic ponding that would largely affect these informal settlements and sites of sand and gravel mining. These built-up areas grew between 3- and 20-fold, thus likely raising local flood exposure well beyond changes in flood hazard. Besides these drastic local changes, about 1 % of Pokhara's built-up urban area and essential rural road network is in the highest-hazard zones highlighted by our flood simulations. Our results stress the need to adapt early-warning strategies for locally differing hydrological and geomorphic conditions in this rapidly growing urban watershed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1284 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-571209 SN - 1866-8372 IS - 1284 SP - 3105 EP - 3123 ER - TY - JOUR A1 - Veh, Georg A1 - Korup, Oliver A1 - Walz, Ariane T1 - Hazard from Himalayan glacier lake outburst floods JF - Proceedings of the National Academy of Sciences of the United States of America : PNAS N2 - Sustained glacier melt in the Himalayas has gradually spawned more than 5,000 glacier lakes that are dammed by potentially unstable moraines. When such dams break, glacier lake outburst floods (GLOFs) can cause catastrophic societal and geomorphic impacts. We present a robust probabilistic estimate of average GLOFs return periods in the Himalayan region, drawing on 5.4 billion simulations. We find that the 100-y outburst flood has an average volume of 33.5(+3.7)/(-3.7) x 10(6) m(3) (posterior mean and 95% highest density interval [HDI]) with a peak discharge of 15,600(+2.000)/(-1,800) m(3).S-1. Our estimated GLOF hazard is tied to the rate of historic lake outbursts and the number of present lakes, which both are highest in the Eastern Himalayas. There, the estimated 100-y GLOF discharge (similar to 14,500 m(3).s(-1)) is more than 3 times that of the adjacent Nyainqentanglha Mountains, and at least an order of magnitude higher than in the Hindu Kush, Karakoram, and Western Himalayas. The GLOF hazard may increase in these regions that currently have large glaciers, but few lakes, if future projected ice loss generates more unstable moraine-dammed lakes than we recognize today. Flood peaks from GLOFs mostly attenuate within Himalayan headwaters, but can rival monsoon-fed discharges in major rivers hundreds to thousands of kilometers downstream. Projections of future hazard from meteorological floods need to account for the extreme runoffs during lake outbursts, given the increasing trends in population, infrastructure, and hydropower projects in Himalayan headwaters. KW - atmospheric warming KW - meltwater lakes KW - GLOF KW - extreme-value statistics KW - Bayesian modeling Y1 - 2019 U6 - https://doi.org/10.1073/pnas.1914898117 SN - 0027-8424 VL - 117 IS - 2 SP - 907 EP - 912 PB - National Academy of Sciences CY - Washington ER - TY - JOUR A1 - Fischer, Melanie A1 - Brettin, Jana A1 - Roessner, Sigrid A1 - Walz, Ariane A1 - Fort, Monique A1 - Korup, Oliver T1 - Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal JF - Natural Hazards and Earth System Sciences N2 - Pokhara (ca. 850 m a.s.l.), Nepal's second-largest city, lies at the foot of the Higher Himalayas and has more than tripled its population in the past 3 decades. Construction materials are in high demand in rapidly expanding built-up areas, and several informal settlements cater to unregulated sand and gravel mining in the Pokhara Valley's main river, the Seti Khola. This river is fed by the Sabche glacier below Annapurna III (7555 m a.s.l.), some 35 km upstream of the city, and traverses one of the steepest topographic gradients in the Himalayas. In May 2012 a sudden flood caused >70 fatalities and intense damage along this river and rekindled concerns about flood risk management. We estimate the flow dynamics and inundation depths of flood scenarios using the hydrodynamic model HEC-RAS (Hydrologic Engineering Center’s River Analysis System). We simulate the potential impacts of peak discharges from 1000 to 10 000 m3 s−1 on land cover based on high-resolution Maxar satellite imagery and OpenStreetMap data (buildings and road network). We also trace the dynamics of two informal settlements near Kaseri and Yamdi with high potential flood impact from RapidEye, PlanetScope, and Google Earth imagery of the past 2 decades. Our hydrodynamic simulations highlight several sites of potential hydraulic ponding that would largely affect these informal settlements and sites of sand and gravel mining. These built-up areas grew between 3- and 20-fold, thus likely raising local flood exposure well beyond changes in flood hazard. Besides these drastic local changes, about 1 % of Pokhara's built-up urban area and essential rural road network is in the highest-hazard zones highlighted by our flood simulations. Our results stress the need to adapt early-warning strategies for locally differing hydrological and geomorphic conditions in this rapidly growing urban watershed. Y1 - 2022 U6 - https://doi.org/10.5194/nhess-22-3105-2022 SN - 1684-9981 VL - 22 SP - 3105 EP - 3123 PB - Copernicus Publications CY - Katlenburg-Lindau ET - 9 ER - TY - JOUR A1 - Philips, Andrea A1 - Walz, Ariane A1 - Bergner, Andreas G. N. A1 - Gräff, Thomas A1 - Heistermann, Maik A1 - Kienzler, Sarah A1 - Korup, Oliver A1 - Lipp, Torsten A1 - Schwanghart, Wolfgang A1 - Zeilinger, Gerold T1 - Immersive 3D geovisualization in higher education JF - Journal of geography in higher education N2 - In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students reveal benefits, such as better orientation in the study area, higher interactivity with the data, improved discourse among students and enhanced motivation through immersive 3D geovisualization. This suggests that immersive 3D visualization can effectively be used in higher education and that 3D CAVE settings enhance interactive learning between students. KW - immersive 3D geovisualization KW - 3D CAVE KW - higher education KW - learning success KW - student survey KW - flood risk Y1 - 2015 U6 - https://doi.org/10.1080/03098265.2015.1066314 SN - 0309-8265 SN - 1466-1845 VL - 39 IS - 3 SP - 437 EP - 449 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Lotze-Campen, Hermann A1 - Verburg, Peter H. A1 - Popp, Alexander A1 - Lindner, Marcus A1 - Verkerk, Pieter J. A1 - Moiseyev, Alexander A1 - Schrammeijer, Elizabeth A1 - Helming, John A1 - Tabeau, Andrzej A1 - Schulp, Catharina J. E. A1 - van der Zanden, Emma H. A1 - Lavalle, Carlo A1 - Batista e Silva, Filipe A1 - Walz, Ariane A1 - Bodirsky, Benjamin Leon T1 - A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways JF - Regional environmental change N2 - Protection of natural or semi-natural ecosystems is an important part of societal strategies for maintaining biodiversity, ecosystem services, and achieving overall sustainable development. The assessment of multiple emerging land use trade-offs is complicated by the fact that land use changes occur and have consequences at local, regional, and even global scale. Outcomes also depend on the underlying socio-economic trends. We apply a coupled, multi-scale modelling system to assess an increase in nature protection areas as a key policy option in the European Union (EU). The main goal of the analysis is to understand the interactions between policy-induced land use changes across different scales and sectors under two contrasting future socio-economic pathways. We demonstrate how complementary insights into land system change can be gained by coupling land use models for agriculture, forestry, and urban areas for Europe, in connection with other world regions. The simulated policy case of nature protection shows how the allocation of a certain share of total available land to newly protected areas, with specific management restrictions imposed, may have a range of impacts on different land-based sectors until the year 2040. Agricultural land in Europe is slightly reduced, which is partly compensated for by higher management intensity. As a consequence of higher costs, total calorie supply per capita is reduced within the EU. While wood harvest is projected to decrease, carbon sequestration rates increase in European forests. At the same time, imports of industrial roundwood from other world regions are expected to increase. Some of the aggregate effects of nature protection have very different implications at the local to regional scale in different parts of Europe. Due to nature protection measures, agricultural production is shifted from more productive land in Europe to on average less productive land in other parts of the world. This increases, at the global level, the allocation of land resources for agriculture, leading to a decrease in tropical forest areas, reduced carbon stocks, and higher greenhouse gas emissions outside of Europe. The integrated modelling framework provides a method to assess the land use effects of a single policy option while accounting for the trade-offs between locations, and between regional, European, and global scales. KW - Land use change KW - Integrated modelling KW - Cross-scale interaction KW - Nature protection KW - Impact assessment Y1 - 2017 U6 - https://doi.org/10.1007/s10113-017-1167-8 SN - 1436-3798 SN - 1436-378X VL - 18 IS - 3 SP - 751 EP - 762 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Schneider, Philipp A1 - Walz, Ariane A1 - Albert, Christian A1 - Lipp, Torsten T1 - Ecosystem-based adaptation in cities BT - use of formal and informal planning instruments JF - Land use policy N2 - Extreme weather events like heavy rainfall and heat waves will likely increase in intensity and frequency due to climate change. As the impacts of these extremes are particularly prominent in urban agglomerations, cities face an urgent need to develop adaptation strategies. Ecosystem-based Adaptation (EbA) provides helpful strategies that harness ecological processes in addition to technical interventions. EbA has been addressed in informal adaptation planning. Formal municipality planning, namely landscape planning, is supposed to include traditionally some EbA measures, although adaptation has not been their explicit focus. Our research aims to investigate how landscape plans incorporate climate-related extremes and EbA as well as to discuss the potential to enhance EbA uptake in formal planning. We conducted a document analysis of informal planning documents from 85 German cities and the analysis of formal landscape plans of 61 of these cities. The results suggest that city size does affect the extent of informal planning instruments and the comprehensiveness of formal landscape plans. Climate-related extremes and EbA measures have traditionally been part of landscape planning. Almost all landscape plans address heat stress, while climate change and heavy rain have been addressed less often, though more frequently since 2008. Greening of walls and roofs, on-site infiltration and water retention reveal significant potential for better integration in landscape plans. Landscape planning offers an entry point for effective climate adaptation through EbA in cities. Informal and formal planning instruments should be closely combined for robust, spatially explicit, legally binding implementation of EbA measures in the future. KW - Landscape planning KW - Climate change adaptation KW - Informal and formal KW - planning KW - Extreme weather KW - Cities Y1 - 2021 U6 - https://doi.org/10.1016/j.landusepol.2021.105722 SN - 0264-8377 VL - 109 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kärcher, Oskar A1 - Filstrup, Christopher T. A1 - Brauns, Mario A1 - Tasevska, Orhideja A1 - Patceva, Suzana A1 - Hellwig, Niels A1 - Walz, Ariane A1 - Frank, Karin A1 - Markovic, Danijela T1 - Chlorophyll a relationships with nutrients and temperature, and predictions for lakes across perialpine and Balkan mountain regions JF - Inland Waters N2 - Model-derived relationships between chlorophyll a (Chl-a) and nutrients and temperature have fundamental implications for understanding complex interactions among water quality measures used for lake classification, yet accuracy comparisons of different approaches are scarce. Here, we (1) compared Chl-a model performances across linear and nonlinear statistical approaches; (2) evaluated single and combined effects of nutrients, depth, and temperature as lake surface water temperature (LSWT) or altitude on Chl-a; and (3) investigated the reliability of the best water quality model across 13 lakes from perialpine and central Balkan mountain regions. Chl-a was modelled using in situ water quality data from 157 European lakes; elevation data and LSWT in situ data were complemented by remote sensing measurements. Nonlinear approaches performed better, implying complex relationships between Chl-a and the explanatory variables. Boosted regression trees, as the best performing approach, accommodated interactions among predictor variables. Chl-a-nutrient relationships were characterized by sigmoidal curves, with total phosphorus having the largest explanatory power for our study region. In comparison with LSWT, utilization of altitude, the often-used temperature surrogate, led to different influence directions but similar predictive performances. These results support utilizing altitude in models for Chl-a predictions. Compared to Chl-a observations, Chl-a predictions of the best performing approach for mountain lakes (oligotrophic-eutrophic) led to minor differences in trophic state categorizations. Our findings suggest that both models with LSWT and altitude are appropriate for water quality predictions of lakes in mountain regions and emphasize the importance of incorporating interactions among variables when facing lake management challenges. KW - chlorophyll a KW - nutrients KW - Ohrid-Prespa region KW - perialpine lakes KW - water temperature Y1 - 2020 U6 - https://doi.org/10.1080/20442041.2019.1689768 SN - 2044-2041 SN - 2044-205X VL - 10 IS - 1 SP - 29 EP - 41 PB - Taylor & Francis CY - London ER - TY - GEN A1 - Kärcher, Oskar A1 - Filstrup, Christopher T. A1 - Brauns, Mario A1 - Tasevska, Orhideja A1 - Patceva, Suzana A1 - Hellwig, Niels A1 - Walz, Ariane A1 - Frank, Karin A1 - Markovic, Danijela T1 - Chlorophyll a relationships with nutrients and temperature, and predictions for lakes across perialpine and Balkan mountain regions T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Model-derived relationships between chlorophyll a (Chl-a) and nutrients and temperature have fundamental implications for understanding complex interactions among water quality measures used for lake classification, yet accuracy comparisons of different approaches are scarce. Here, we (1) compared Chl-a model performances across linear and nonlinear statistical approaches; (2) evaluated single and combined effects of nutrients, depth, and temperature as lake surface water temperature (LSWT) or altitude on Chl-a; and (3) investigated the reliability of the best water quality model across 13 lakes from perialpine and central Balkan mountain regions. Chl-a was modelled using in situ water quality data from 157 European lakes; elevation data and LSWT in situ data were complemented by remote sensing measurements. Nonlinear approaches performed better, implying complex relationships between Chl-a and the explanatory variables. Boosted regression trees, as the best performing approach, accommodated interactions among predictor variables. Chl-a-nutrient relationships were characterized by sigmoidal curves, with total phosphorus having the largest explanatory power for our study region. In comparison with LSWT, utilization of altitude, the often-used temperature surrogate, led to different influence directions but similar predictive performances. These results support utilizing altitude in models for Chl-a predictions. Compared to Chl-a observations, Chl-a predictions of the best performing approach for mountain lakes (oligotrophic-eutrophic) led to minor differences in trophic state categorizations. Our findings suggest that both models with LSWT and altitude are appropriate for water quality predictions of lakes in mountain regions and emphasize the importance of incorporating interactions among variables when facing lake management challenges. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1443 KW - chlorophyll a KW - nutrients KW - Ohrid-Prespa region KW - perialpine lakes KW - water temperature Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515271 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Veh, Georg A1 - Korup, Oliver A1 - von Specht, Sebastian A1 - Rößner, Sigrid A1 - Walz, Ariane T1 - Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya JF - Nature climate change N2 - Shrinking glaciers in the Hindu Kush-Karakoram-Himalaya-Nyainqentanglha (HKKHN) region have formed several thousand moraine-dammed glacial lakes(1-3), some of these having grown rapidly in past decades(3,4). This growth may promote more frequent and potentially destructive glacial lake outburst floods (GLOFs)(5-7). Testing this hypothesis, however, is confounded by incomplete databases of the few reliable, though selective, case studies. Here we present a consistent Himalayan GLOF inventory derived automatically from all available Landsat imagery since the late 1980s. We more than double the known GLOF count and identify the southern Himalayas as a hotspot region, compared to the more rarely affected Hindu Kush-Karakoram ranges. Nevertheless, the average annual frequency of 1.3 GLOFs has no credible posterior trend despite reported increases in glacial lake areas in most of the HKKHN3,8, so that GLOF activity per unit lake area has decreased since the late 1980s. We conclude that learning more about the frequency and magnitude of outburst triggers, rather than focusing solely on rapidly growing glacial lakes, might improve the appraisal of GLOF hazards. KW - Climate change KW - Cryospheric science KW - Environmental impact KW - Geomorphology Y1 - 2019 U6 - https://doi.org/10.1038/s41558-019-0437-5 SN - 1758-678X SN - 1758-6798 VL - 9 IS - 5 SP - 379 EP - 383 PB - Nature Publ. Group CY - London ER - TY - RPRT A1 - Thieken, Annegret A1 - Dierck, Julia A1 - Dunst, Lea A1 - Göpfert, Christian A1 - Heidenreich, Anna A1 - Hetz, Karen A1 - Kern, Julia A1 - Kern, Kristine A1 - Lipp, Torsten A1 - Lippert, Cordine A1 - Meves, Monika A1 - Niederhafner, Stefan A1 - Otto, Antje A1 - Rohrbacher, Christian A1 - Schmidt, Katja A1 - Strate, Leander A1 - Stumpp, Inga A1 - Walz, Ariane T1 - Urbane Resilienz gegenüber extremen Wetterereignissen – Typologien und Transfer von Anpassungsstrategien in kleinen Großstädten und Mittelstädten (ExTrass) BT - Verbundvorhaben „Zukunftsstadt“ (Definitionsprojekt) N2 - Weltweit verursachen Städte etwa 70 % der Treibhausgasemissionen und sind daher wichtige Akteure im Klimaschutz bzw. eine wichtige Zielgruppe von Klimapolitiken. Gleichzeitig sind Städte besonders stark von möglichen Auswirkungen des Klimawandels betroffen: Insbesondere extreme Wetterereignisse wie Hitzewellen oder Starkregenereignisse mit Überflutungen verursachen in Städten hohe Sachschäden und wirken sich negativ auf die Gesundheit der städtischen Bevölkerung aus. Daher verfolgt das Projekt ExTrass das Ziel, die städtische Resilienz gegenüber extremen Wetterereignissen in enger Zusammenarbeit mit Stadtverwaltungen, Strukturen des Bevölkerungsschutzes und der Zivilgesellschaft zu stärken. Im Fokus stehen dabei (kreisfreie) Groß- und Mittelstädte mit 50.000 bis 500.000 Einwohnern, insbesondere die Fallstudienstädte Potsdam, Remscheid und Würzburg. Der vorliegende Bericht beinhaltet die Ergebnisse der 14-monatigen Definitionsphase von ExTrass, in der vor allem die Abstimmung eines Arbeitsprogramms im Mittelpunkt stand, das in einem nachfolgenden dreijährigen Forschungsprojekt (F+E-Phase) gemeinsam von Wissenschaft und Praxispartnern umgesetzt werden soll. Begleitend wurde eine Bestandsaufnahme von Klimaanpassungs- und Klimaschutzstrategien/-plänen in 99 deutschen Groß- und Mittelstädten vorgenommen. Zudem wurden für Potsdam und Würzburg Pfadanalysen für die Klimapolitik durchgeführt. Darin wird insbesondere die Bedeutung von Schlüsselakteuren deutlich. Weiterhin wurden im Rahmen von Stakeholder-Workshops Anpassungsherausforderungen und aktuelle Handlungsbedarfe in den Fallstudienstädten identifiziert und Lösungsansätze erarbeitet, die in der F+E-Phase entwickelt und getestet werden sollen. Neben Maßnahmen auf gesamtstädtischer Ebene und auf Stadtteilebene wurden Maßnahmen angestrebt, die die Risikowahrnehmung, Vorsorge und Selbsthilfefähigkeit von Unternehmen und Bevölkerung stärken können. Daher wurde der Stand der Risikokommunikation in Deutschland für das Projekt aufgearbeitet und eine erste Evaluation von Risikokommunikationswerkzeugen durchgeführt. Der Bericht endet mit einer Kurzfassung des Arbeitsprogramms 2018-2021. N2 - Cities are responsible for around 70 % of the global greenhouse gas emissions and are hence important for climate mitigation; consequently they are a crucial target group of climate policies. At the same time, cities are also severely affected by potential impacts of climate change: extreme weather events such as heat waves or heavy precipitation (pluvial floods) cause high economic losses in urban areas and have adverse effects on the health of the urban population. Therefore, the project ExTrass is aimed at measurably enhancing cities’ resilience against extreme weather events jointly with representatives of urban administrations, disaster assistance and civil society. The project focusses on small metropolises and medium-sized cities with 50,000 to 500,000 inhabitants, in particular on the case study cities of Potsdam, Remscheid and Würzburg. The report summarizes the results of a 14-month definition phase whose main purpose was to define the research program of the successive 3-year-R+D-project, to be implemented jointly by researchers and practitioners. In addition, an inventory of climate change adaptation and climate mitigation strategies and plans of 99 German metropolises and medium-sized cities was created. Moreover, an in-depth analysis of the pathways of climate policies in the cities of Potsdam and Würzburg was conducted, which particularly revealed the relevance of key personalities. Furthermore, current challenges in climate adaptation and needs for action were identified during stakeholder workshops in the case study cities. In addition, possible solutions were discussed which will be implemented and tested during the R+D-project. Besides measures on the city level and on the level of urban districts, options that improve risk awareness, preparedness and coping capacities of enterprises and residents are strived for. Thus the state-of-the-art of risk communication in Germany was reviewed for the project and a first evaluation of a serious game was performed. The report ends with a brief outline of the work program 2018-2021. KW - Klimaanpassung KW - Klimaschutz KW - Pfadanalysen KW - Stadtentwicklung KW - Hitze KW - Starkregen KW - Risikokommunikation KW - Potsdam KW - Würzburg KW - Deutschland KW - Climate Adaptation KW - Climate Mitigation KW - analysis of pathways KW - urban development KW - heat KW - pluvial flooding KW - risk communication KW - city of Potsdam KW - city of Wuerzburg KW - Germany Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-416067 ER - TY - RPRT A1 - Heidenreich, Anna A1 - Buchner, Martin A1 - Walz, Ariane A1 - Thieken, Annegret T1 - Das Besucherverhalten unter Hitzebelastung auf der Landesgartenschau Würzburg 2018 BT - Auswertung von Beobachtungen, Wettermessungen und Befragungen N2 - Auf dem Gelände der Landesgartenschau 2018 in Würzburg untersuchte unsere Forschungsgruppe das Anpassungsverhalten der BesucherInnen an Hitze. Ziel war es herauszufinden, wie BesucherInnen von Großveranstaltungen Hitzetage erleben und wie sie sich während unterschiedlicher Wetterbedingungen verhalten. Auf Grundlage der Ergebnisse sollen Empfehlungen zur Förderung individuellen Anpassungsverhaltens bei Hitzebelastung an Veranstalter ausgesprochen werden. An sechs aufeinanderfolgenden Wochenenden im Juli und August führten wir Temperaturmessungen, Verhaltensbeobachtungen und Befragungen unter den BesucherInnen durch. Die Wetterlage an den zwölf Erhebungstagen fiel unterschiedlich aus: Es gab sechs Hitzetage mit Temperaturen über 30 °C, vier warme Sommertage und zwei kühle Regentage. Es ließen sich unterschiedliche Anpassungsmaßnahmen bei den 2741 beobachteten BesucherInnen identifizieren. Hierzu gehören das Tragen von leichter oder kurzer Kleidung und von Kopfbedeckungen, das Mitführen von Getränken oder Schirmen sowie das Aufhalten im Schatten oder Abkühlen in einer Wasserfläche. Dabei fanden sich Unterschiede zwischen den verschiedenen Altersgruppen: Jüngere und Ältere hatten unterschiedliche Präferenzen für einzelne Anpassungsmaßnahmen. So suchten BesucherInnen über 60 Jahren bevorzugt Sitzplätze im Schatten auf, wohingegen sich Kinder zum Abkühlen in Wasserflächen aufhielten. Die Befragung von 306 BesucherInnen ergab, dass Hitzetage als stärker belastend wahrgenommen wurden als Sommer- oder Regentage. Die Mehrheit zeigte zudem ein hohes Bewusstsein für die Thematik Hitzebelastung und Anpassung. Dies spiegelte sich aber nur bei einem Teil der Befragten in ihrem tatsächlich gezeigten Anpassungsmaßnahmen wider. Offizielle Hitzewarnungen des DWD waren den meisten BesucherInnen an Tagen mit ebendiesen nicht bekannt. Auf Grundlage unserer Untersuchungsergebnisse empfehlen wir eine verbesserte Risikokommunikation in Bezug auf Hitze. Veranstalter und Behörden müssen zielgruppenspezifisch denken, wenn es um die Förderung von Hitzeanpassung geht. Angeraten werden u. a. die Schaffung von schattigen Sitzplätzen besonders für ältere BesucherInnen und Wasserstellen, an denen Kinder und Jugendliche spielen und sich erfrischen können. Da sich Hitzewellen in Zukunft häufen werden, dienen die Erkenntnisse dieser Untersuchung der Planung und Durchführung weiterer Open-Air-Veranstaltungen. KW - Hitzebelastung KW - Anpassungsverhalten KW - Open-Air-Veranstaltungen KW - Verhaltensbeobachtung KW - Besucherbefragung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430185 ER - TY - JOUR A1 - Heidenreich, Anna A1 - Buchner, Martin A1 - Walz, Ariane A1 - Thieken, Annegret T1 - How to deal with heat stress at an open-air event? BT - Exploring visitors’ vulnerability, risk perception, and adaptive behavior with a multimethod approach JF - Weather, climate & society / American Meteorological Society N2 - Heat waves are increasingly common in many countries across the globe, and also in Germany, where this study is set. Heat poses severe health risks, especially for vulnerable groups such as the elderly and children. This case study explores visitors' behavior and perceptions during six weekends in the summer of 2018 at a 6-month open-air horticultural show. Data from a face-to-face survey (n = 306) and behavioral observations ( n = 2750) were examined by using correlation analyses, ANOVA, and multiple regression analyses. Differences in weather perception, risk awareness, adaptive behavior, and activity level were observed between rainy days (maximum daily temperature, 25 degrees C), warmsummer days (25 degrees-30 degrees C), and hot days (>30 degrees C). Respondents reported a high level of heat risk awareness, butmost (90%) were unaware of actual heat warnings. During hot days, more adaptive measures were reported and observed. Older respondents reported taking the highest number of adaptive measures. We observed the highest level of adaptation in children, but they also showed the highest activity level. From our results we discuss how to facilitate individual adaptation to heat stress at open-air events by taking the heterogeneity of visitors into account. To mitigate negative health outcomes for citizens in the future, we argue for tailored risk communication aimed at vulnerable groups.
SIGNIFICANCE STATEMENT: People around the world are facing higher average temperatures. While higher temperatures make open-air events a popular leisure time activity in summer, heat waves are a threat to health and life. Since there is not much research on how visitors of such events perceive different weather conditions-especially hot temperatures-we explored this in our case study in southern Germany at an open-air horticultural show in the summer of 2018. We discovered deficits both in people's awareness of current heat risk and the heat adaptation they carry out themselves. Future research should further investigate risk perception and adaptation behavior of private individuals, whereas event organizers and authorities need to continually focus on risk communication and facilitate individual adaptation of their visitors. KW - Extreme events KW - Adaptation KW - Communications/decision making KW - Emergency KW - preparedness KW - Emergency response KW - Field experiments KW - Societal impacts Y1 - 2021 U6 - https://doi.org/10.1175/WCAS-D-21-0027.1 SN - 1948-8327 SN - 1948-8335 VL - 13 IS - 4 SP - 989 EP - 1002 PB - American Meteorological Soc. CY - Boston ER -